[][src]Struct stm32h7::stm32h743v::fmc::bwtr1::R

pub struct R { /* fields omitted */ }

Value read from the register

Methods

impl R[src]

pub fn bits(&self) -> u32[src]

Value of the register as raw bits

pub fn addset(&self) -> ADDSETR[src]

Bits 0:3 - Address setup phase duration. These bits are written by software to define the duration of the address setup phase in KCK_FMC cycles (refer to Figure81 to Figure93), used in asynchronous accesses: ... Note: In synchronous accesses, this value is not used, the address setup phase is always 1 Flash clock period duration. In muxed mode, the minimum ADDSET value is 1.

pub fn addhld(&self) -> ADDHLDR[src]

Bits 4:7 - Address-hold phase duration. These bits are written by software to define the duration of the address hold phase (refer to Figure81 to Figure93), used in asynchronous multiplexed accesses: ... Note: In synchronous NOR Flash accesses, this value is not used, the address hold phase is always 1 Flash clock period duration.

pub fn datast(&self) -> DATASTR[src]

Bits 8:15 - Data-phase duration. These bits are written by software to define the duration of the data phase (refer to Figure81 to Figure93), used in asynchronous SRAM, PSRAM and NOR Flash memory accesses:

pub fn busturn(&self) -> BUSTURNR[src]

Bits 16:19 - Bus turnaround phase duration These bits are written by software to add a delay at the end of a write transaction to match the minimum time between consecutive transactions (tEHEL from ENx high to ENx low): (BUSTRUN + 1) KCK_FMC period ≥ tEHELmin. The programmed bus turnaround delay is inserted between a an asynchronous write transfer and any other asynchronous /synchronous read or write transfer to or from a static bank. If a read operation is performed, the bank can be the same or a different one, whereas it must be different in case of write operation to the bank, except in muxed mode or mode D. In some cases, whatever the programmed BUSTRUN values, the bus turnaround delay is fixed as follows: The bus turnaround delay is not inserted between two consecutive asynchronous write transfers to the same static memory bank except for muxed mode and mode D. There is a bus turnaround delay of 2 FMC clock cycle between: Two consecutive synchronous write operations (in Burst or Single mode) to the same bank A synchronous write transfer ((in Burst or Single mode) and an asynchronous write or read transfer to or from static memory bank. There is a bus turnaround delay of 3 FMC clock cycle between: Two consecutive synchronous write operations (in Burst or Single mode) to different static banks. A synchronous write transfer (in Burst or Single mode) and a synchronous read from the same or a different bank. ...

pub fn accmod(&self) -> ACCMODR[src]

Bits 28:29 - Access mode. These bits specify the asynchronous access modes as shown in the next timing diagrams.These bits are taken into account only when the EXTMOD bit in the FMC_BCRx register is 1.

Auto Trait Implementations

impl Unpin for R

impl Sync for R

impl Send for R

Blanket Implementations

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Same<T> for T

type Output = T

Should always be Self