[][src]Struct stm32h7::stm32h743v::i2c1::isr::R

pub struct R { /* fields omitted */ }

Value read from the register

Methods

impl R[src]

pub fn bits(&self) -> u32[src]

Value of the register as raw bits

pub fn txe(&self) -> TXER[src]

Bit 0 - Transmit data register empty (transmitters) This bit is set by hardware when the I2C_TXDR register is empty. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to 1 by software in order to flush the transmit data register I2C_TXDR. Note: This bit is set by hardware when PE=0.

pub fn txis(&self) -> TXISR[src]

Bit 1 - Transmit interrupt status (transmitters) This bit is set by hardware when the I2C_TXDR register is empty and the data to be transmitted must be written in the I2C_TXDR register. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to 1 by software when NOSTRETCH=1 only, in order to generate a TXIS event (interrupt if TXIE=1 or DMA request if TXDMAEN=1). Note: This bit is cleared by hardware when PE=0.

pub fn rxne(&self) -> RXNER[src]

Bit 2 - Receive data register not empty (receivers) This bit is set by hardware when the received data is copied into the I2C_RXDR register, and is ready to be read. It is cleared when I2C_RXDR is read. Note: This bit is cleared by hardware when PE=0.

pub fn addr(&self) -> ADDRR[src]

Bit 3 - Address matched (slave mode) This bit is set by hardware as soon as the received slave address matched with one of the enabled slave addresses. It is cleared by software by setting ADDRCF bit. Note: This bit is cleared by hardware when PE=0.

pub fn nackf(&self) -> NACKFR[src]

Bit 4 - Not Acknowledge received flag This flag is set by hardware when a NACK is received after a byte transmission. It is cleared by software by setting the NACKCF bit. Note: This bit is cleared by hardware when PE=0.

pub fn stopf(&self) -> STOPFR[src]

Bit 5 - Stop detection flag This flag is set by hardware when a Stop condition is detected on the bus and the peripheral is involved in this transfer: either as a master, provided that the STOP condition is generated by the peripheral. or as a slave, provided that the peripheral has been addressed previously during this transfer. It is cleared by software by setting the STOPCF bit. Note: This bit is cleared by hardware when PE=0.

pub fn tc(&self) -> TCR[src]

Bit 6 - Transfer Complete (master mode) This flag is set by hardware when RELOAD=0, AUTOEND=0 and NBYTES data have been transferred. It is cleared by software when START bit or STOP bit is set. Note: This bit is cleared by hardware when PE=0.

pub fn tcr(&self) -> TCRR[src]

Bit 7 - Transfer Complete Reload This flag is set by hardware when RELOAD=1 and NBYTES data have been transferred. It is cleared by software when NBYTES is written to a non-zero value. Note: This bit is cleared by hardware when PE=0. This flag is only for master mode, or for slave mode when the SBC bit is set.

pub fn berr(&self) -> BERRR[src]

Bit 8 - Bus error This flag is set by hardware when a misplaced Start or Stop condition is detected whereas the peripheral is involved in the transfer. The flag is not set during the address phase in slave mode. It is cleared by software by setting BERRCF bit. Note: This bit is cleared by hardware when PE=0.

pub fn arlo(&self) -> ARLOR[src]

Bit 9 - Arbitration lost This flag is set by hardware in case of arbitration loss. It is cleared by software by setting the ARLOCF bit. Note: This bit is cleared by hardware when PE=0.

pub fn ovr(&self) -> OVRR[src]

Bit 10 - Overrun/Underrun (slave mode) This flag is set by hardware in slave mode with NOSTRETCH=1, when an overrun/underrun error occurs. It is cleared by software by setting the OVRCF bit. Note: This bit is cleared by hardware when PE=0.

pub fn pecerr(&self) -> PECERRR[src]

Bit 11 - PEC Error in reception This flag is set by hardware when the received PEC does not match with the PEC register content. A NACK is automatically sent after the wrong PEC reception. It is cleared by software by setting the PECCF bit. Note: This bit is cleared by hardware when PE=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to 0. Please refer to Section25.3: I2C implementation.

pub fn timeout(&self) -> TIMEOUTR[src]

Bit 12 - Timeout or tLOW detection flag This flag is set by hardware when a timeout or extended clock timeout occurred. It is cleared by software by setting the TIMEOUTCF bit. Note: This bit is cleared by hardware when PE=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to 0. Please refer to Section25.3: I2C implementation.

pub fn alert(&self) -> ALERTR[src]

Bit 13 - SMBus alert This flag is set by hardware when SMBHEN=1 (SMBus host configuration), ALERTEN=1 and a SMBALERT event (falling edge) is detected on SMBA pin. It is cleared by software by setting the ALERTCF bit. Note: This bit is cleared by hardware when PE=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to 0. Please refer to Section25.3: I2C implementation.

pub fn busy(&self) -> BUSYR[src]

Bit 15 - Bus busy This flag indicates that a communication is in progress on the bus. It is set by hardware when a START condition is detected. It is cleared by hardware when a Stop condition is detected, or when PE=0.

pub fn dir(&self) -> DIRR[src]

Bit 16 - Transfer direction (Slave mode) This flag is updated when an address match event occurs (ADDR=1).

pub fn addcode(&self) -> ADDCODER[src]

Bits 17:23 - Address match code (Slave mode) These bits are updated with the received address when an address match event occurs (ADDR = 1). In the case of a 10-bit address, ADDCODE provides the 10-bit header followed by the 2 MSBs of the address.

Auto Trait Implementations

impl Unpin for R

impl Send for R

impl Sync for R

Blanket Implementations

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Same<T> for T

type Output = T

Should always be Self