1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#[doc = r"Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::SHIFTR {
    #[doc = r"Writes to the register"]
    #[inline(always)]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        self.register.set(
            f(&mut W {
                bits: Self::reset_value(),
            })
            .bits,
        );
    }
    #[doc = r"Reset value of the register"]
    #[inline(always)]
    pub const fn reset_value() -> u32 {
        0
    }
    #[doc = r"Writes the reset value to the register"]
    #[inline(always)]
    pub fn reset(&self) {
        self.register.set(Self::reset_value())
    }
}
#[doc = r"Proxy"]
pub struct _SUBFSW<'a> {
    w: &'a mut W,
}
impl<'a> _SUBFSW<'a> {
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub unsafe fn bits(self, value: u16) -> &'a mut W {
        self.w.bits &= !(0x7fff << 0);
        self.w.bits |= ((value as u32) & 0x7fff) << 0;
        self.w
    }
}
#[doc = r"Proxy"]
pub struct _ADD1SW<'a> {
    w: &'a mut W,
}
impl<'a> _ADD1SW<'a> {
    #[doc = r"Sets the field bit"]
    #[inline(always)]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r"Clears the field bit"]
    #[inline(always)]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r"Writes raw bits to the field"]
    #[inline(always)]
    pub fn bit(self, value: bool) -> &'a mut W {
        self.w.bits &= !(0x01 << 31);
        self.w.bits |= ((value as u32) & 0x01) << 31;
        self.w
    }
}
impl W {
    #[doc = r"Writes raw bits to the register"]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bits 0:14 - Subtract a fraction of a second These bits are write only and is always read as zero. Writing to this bit has no effect when a shift operation is pending (when SHPF=1, in RTC_ISR). The value which is written to SUBFS is added to the synchronous prescaler counter. Since this counter counts down, this operation effectively subtracts from (delays) the clock by: Delay (seconds) = SUBFS / (PREDIV_S + 1) A fraction of a second can effectively be added to the clock (advancing the clock) when the ADD1S function is used in conjunction with SUBFS, effectively advancing the clock by: Advance (seconds) = (1 - (SUBFS / (PREDIV_S + 1))). Note: Writing to SUBFS causes RSF to be cleared. Software can then wait until RSF=1 to be sure that the shadow registers have been updated with the shifted time."]
    #[inline(always)]
    pub fn subfs(&mut self) -> _SUBFSW {
        _SUBFSW { w: self }
    }
    #[doc = "Bit 31 - Add one second This bit is write only and is always read as zero. Writing to this bit has no effect when a shift operation is pending (when SHPF=1, in RTC_ISR). This function is intended to be used with SUBFS (see description below) in order to effectively add a fraction of a second to the clock in an atomic operation."]
    #[inline(always)]
    pub fn add1s(&mut self) -> _ADD1SW {
        _ADD1SW { w: self }
    }
}