1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
use cast::{u8, u16, u32};
use stm32f429::{I2C1, I2C2, I2C3};
use gpio::gpioa::PA8;
use gpio::gpiob::{PB6, PB7, PB8, PB9, PB10, PB11};
use gpio::gpioc::{PC9};
use gpio::gpiof::{PF0, PF1};
use gpio::gpioh::{PH4, PH5, PH7, PH8};
use gpio::AF4;
use hal::blocking::i2c::{Read, Write};
use rcc::{APB1, Clocks};
use time::{KiloHertz, MegaHertz};
#[derive(Debug)]
pub enum Error {
Bus,
Arbitration,
Acknowledge,
Overrun,
Pec,
Timeout,
Alert,
#[doc(hidden)] _Extensible,
}
pub unsafe trait SclPin<I2C> {}
pub unsafe trait SdaPin<I2C> {}
unsafe impl SclPin<I2C1> for PB6<AF4> {}
unsafe impl SclPin<I2C1> for PB8<AF4> {}
unsafe impl SclPin<I2C2> for PB10<AF4> {}
unsafe impl SclPin<I2C2> for PF1<AF4> {}
unsafe impl SclPin<I2C2> for PH4<AF4> {}
unsafe impl SclPin<I2C3> for PA8<AF4> {}
unsafe impl SclPin<I2C3> for PH7<AF4> {}
unsafe impl SdaPin<I2C1> for PB7<AF4> {}
unsafe impl SdaPin<I2C1> for PB9<AF4> {}
unsafe impl SdaPin<I2C2> for PB11<AF4> {}
unsafe impl SdaPin<I2C2> for PF0<AF4> {}
unsafe impl SdaPin<I2C2> for PH5<AF4> {}
unsafe impl SdaPin<I2C3> for PC9<AF4> {}
unsafe impl SdaPin<I2C3> for PH8<AF4> {}
#[allow(unused)]
pub struct I2c<I2C, SCL, SDA> {
i2c: I2C,
scl: SCL,
sda: SDA,
}
macro_rules! busy_wait {
($i2c:expr, $flag:ident) => {
loop {
let isr = $i2c.sr1.read();
if isr.$flag().bit_is_set() {
break;
} else if isr.berr().bit_is_set() {
return Err(Error::Bus);
} else if isr.arlo().bit_is_set() {
return Err(Error::Arbitration);
} else if isr.af().bit_is_set() {
return Err(Error::Acknowledge);
} else if isr.ovr().bit_is_set() {
return Err(Error::Overrun);
} else if isr.pecerr().bit_is_set() {
return Err(Error::Pec);
} else if isr.timeout().bit_is_set() {
return Err(Error::Timeout);
} else if isr.smbalert().bit_is_set() {
return Err(Error::Alert);
} else {
$i2c.sr2.read();
}
}
}
}
macro_rules! hal {
($($I2CX:ident: ($i2cX:ident, $i2cXen:ident, $i2cXrst:ident),)+) => {
$(
impl<SCL, SDA> I2c<$I2CX, SCL, SDA> {
pub fn $i2cX<F>(
i2c: $I2CX,
scl: SCL,
sda: SDA,
freq: F,
clocks: Clocks,
apb1: &mut APB1,
) -> Self where
F: Into<KiloHertz>,
SCL: SclPin<$I2CX>,
SDA: SdaPin<$I2CX>,
{
apb1.enr().modify(|_, w| w.$i2cXen().set_bit());
apb1.rstr().modify(|_, w| w.$i2cXrst().set_bit());
apb1.rstr().modify(|_, w| w.$i2cXrst().clear_bit());
let i2cclk = clocks.pclk1();
let i2cclk_mhz = Into::<MegaHertz>::into(i2cclk).0;
let i2cfreq_mhz = u8(i2cclk_mhz).unwrap()
.max(2)
.min(50);
i2c.cr2.modify(|_, w| unsafe { w.freq().bits(i2cfreq_mhz) });
let i2cclk_khz = Into::<KiloHertz>::into(i2cclk).0;
let freq_khz = freq.into().0;
let ccr = u16((i2cclk_khz / freq_khz) >> 1).unwrap();
i2c.ccr.modify(|_, w| unsafe { w.ccr().bits(ccr) });
let trise = u8(((i2cclk_khz / freq_khz) >> 1) + 1).unwrap();
i2c.trise.modify(|_, w| unsafe { w.trise().bits(trise) });
i2c.cr1.write(|w| w.pe().set_bit());
I2c { i2c, scl, sda }
}
}
impl<SCL, SDA> Read for I2c<$I2CX, SCL, SDA> {
type Error = Error;
fn read(
&mut self,
addr: u8,
buffer: &mut [u8],
) -> Result<(), Error> {
self.i2c.cr1.modify(|_, w| {
w.start().set_bit()
.ack().set_bit()
});
while ! self.i2c.sr1.read().sb().bit() ||
! self.i2c.sr2.read().msl().bit() {}
self.i2c.dr.write(|w| unsafe { w.bits((u32(addr) << 1) | 1) });
busy_wait!(self.i2c, addr);
self.i2c.sr2.read();
let len = buffer.len();
for (i, byte) in buffer.iter_mut().enumerate() {
if i == len - 1 {
self.i2c.cr1.modify(|_, w| {
w.ack().clear_bit()
});
} else {
}
busy_wait!(self.i2c, rx_ne);
*byte = self.i2c.dr.read().bits() as u8;
}
self.i2c.cr1.modify(|_, w| {
w.stop().set_bit()
});
while self.i2c.sr2.read().busy().bit() {
if self.i2c.sr1.read().rx_ne().bit() {
self.i2c.dr.read();
}
}
Ok(())
}
}
impl<SCL, SDA> Write for I2c<$I2CX, SCL, SDA> {
type Error = Error;
fn write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Error> {
self.i2c.cr1.modify(|_, w| {
w.start().set_bit()
.ack().set_bit()
});
while ! self.i2c.sr1.read().sb().bit() ||
! self.i2c.sr2.read().msl().bit() {}
self.i2c.dr.write(|w| unsafe { w.bits((u32(addr) << 1) | 0) });
busy_wait!(self.i2c, addr);
self.i2c.sr2.read();
for byte in bytes {
busy_wait!(self.i2c, tx_e);
self.i2c.dr.write(|w| unsafe { w.bits(u32(*byte)) });
}
busy_wait!(self.i2c, tx_e);
self.i2c.cr1.modify(|_, w| {
w.stop().set_bit()
.ack().clear_bit()
});
while self.i2c.sr2.read().busy().bit() {}
Ok(())
}
}
)+
}
}
hal! {
I2C1: (i2c1, i2c1en, i2c1rst),
I2C2: (i2c2, i2c2en, i2c2rst),
I2C3: (i2c3, i2c3en, i2c3rst),
}