stm32_hal2/rtc.rs
1//! Support for the Real Time Clock (RTC) peripheral.
2//! For more details, see
3//! [ST AN4759](https:/www.st.com%2Fresource%2Fen%2Fapplication_note%2Fdm00226326-using-the-hardware-realtime-clock-rtc-and-the-tamper-management-unit-tamp-with-stm32-microcontrollers-stmicroelectronics.pdf&usg=AOvVaw3PzvL2TfYtwS32fw-Uv37h)
4
5//! Uses [Chrono](https://docs.rs/chrono) for dates and times.
6
7use core::convert::TryInto;
8
9use cfg_if::cfg_if;
10use chrono::{Datelike, NaiveDate, NaiveDateTime, NaiveTime, Timelike};
11
12use crate::{
13 error::{Error, Result},
14 pac::{EXTI, PWR, RCC, RTC},
15 util::bounded_loop,
16};
17
18// todo: QC use of ICSR vice SR and ISR wherever used in this module!
19
20/// RTC Clock source.
21#[derive(Clone, Copy, Debug, PartialEq)]
22#[repr(u8)]
23pub enum RtcClockSource {
24 /// 01: LSE oscillator clock used as RTC clock
25 Lse = 0b01,
26 /// 10: LSI oscillator clock used as RTC clock
27 Lsi = 0b10,
28 /// 11: HSE oscillator clock divided by 32 used as RTC clock
29 Hse = 0b11,
30}
31
32/// RTC error type.
33#[cfg_attr(feature = "defmt", derive(defmt::Format))]
34#[derive(Debug, Clone, Copy, Eq, PartialEq)]
35pub enum RtcError {
36 /// Invalid input error.
37 InvalidInputData,
38}
39
40/// See ref man, section 27.6.3, or AN4769, section 2.4.2.
41/// To be used with WakeupPrescaler
42#[derive(Clone, Copy, Debug)]
43enum WakeupDivision {
44 Sixteen,
45 Eight,
46 Four,
47 Two,
48}
49
50/// See AN4759, table 13.
51#[derive(Clone, Copy, Debug)]
52enum ClockConfig {
53 One(WakeupDivision),
54 Two,
55 Three,
56}
57
58/// Interrupt event
59pub enum Event {
60 WakeupTimer,
61 AlarmA,
62 AlarmB,
63 Timestamp,
64}
65
66pub enum Alarm {
67 AlarmA,
68 AlarmB,
69}
70
71impl From<Alarm> for Event {
72 fn from(a: Alarm) -> Self {
73 match a {
74 Alarm::AlarmA => Event::AlarmA,
75 Alarm::AlarmB => Event::AlarmB,
76 }
77 }
78}
79
80/// Represents a Real Time Clock (RTC) peripheral.
81pub struct Rtc {
82 /// RTC Peripheral register definition
83 regs: RTC,
84 config: RtcConfig,
85}
86
87#[derive(Copy, Clone, Debug, PartialEq)]
88/// Configuration data for the RTC.
89pub struct RtcConfig {
90 /// RTC clock source. Defaults to LSI (Low speed internal oscillator)
91 pub clock_source: RtcClockSource,
92 /// Asynchronous prescaler factor
93 /// This is the asynchronous division factor:
94 /// ck_apre frequency = RTCCLK frequency/(PREDIV_A+1)
95 /// ck_apre drives the subsecond register. Defaults to 127.
96 pub async_prescaler: u8,
97 /// Synchronous prescaler factor
98 /// This is the synchronous division factor:
99 /// ck_spre frequency = ck_apre frequency/(PREDIV_S+1)
100 /// ck_spre must be 1Hz. Defaults to 255.
101 pub sync_prescaler: u16,
102 /// Bypass LSE output - eg if you're using a self-powered external oscillator. This
103 /// saves power, and lets you use the LSE output pin as a GPIO.
104 pub bypass_lse_output: bool,
105}
106
107impl Default for RtcConfig {
108 /// LSI with prescalers assuming 32.768 kHz.
109 /// Raw sub-seconds in 1/256.
110 fn default() -> Self {
111 RtcConfig {
112 clock_source: RtcClockSource::Lsi,
113 async_prescaler: 127,
114 sync_prescaler: 255,
115 bypass_lse_output: false,
116 }
117 }
118}
119
120impl Rtc {
121 /// Initialize the RTC, including configuration register writes.
122 pub fn new(regs: RTC, config: RtcConfig) -> Result<Self> {
123 let mut rtc = Self { regs, config };
124
125 // Enable the peripheral clock for communication
126 // You must enable the `pwren()` bit before making RTC register writes, or they won't stay
127 // set. Enable the backup interface by setting PWREN
128
129 // Note that unlock other RCC enableing processes, there's no corresponding reset
130 // field here.
131
132 // See L4 RM, `Backup domain access` section.
133 let rcc = unsafe { &(*RCC::ptr()) };
134 let pwr = unsafe { &(*PWR::ptr()) };
135
136 cfg_if! {
137 if #[cfg(any(feature = "f3", feature = "f4"))] {
138 rcc.apb1enr().modify(|_, w| w.pwren().bit(true));
139 pwr.cr().read(); // read to allow the pwr clock to enable
140 pwr.cr().modify(|_, w| w.dbp().bit(true));
141 bounded_loop!(pwr.cr().read().dbp().bit_is_clear(), Error::RegisterUnchanged);
142 } else if #[cfg(any(feature = "l4", feature = "l5", feature = "g4", feature = "l412", feature = "wb", feature = "wl"))] {
143 // 1. Enable the power interface clock by setting the PWREN bits in the Section 6.4.18:
144 // APB1 peripheral clock enable register 1 (RCC_APB1ENR1)
145 #[cfg(not(any(feature = "wb", feature = "wl")))]
146 rcc.apb1enr1().modify(|_, w| {
147 w.pwren().bit(true);
148 w.rtcapben().bit(true)
149 });
150 #[cfg(any(feature = "wb", feature = "wl"))]
151 rcc.apb1enr1().modify(|_, w| w.rtcapben().bit(true));
152
153 rcc.apb1smenr1().modify(|_, w| w.rtcapbsmen().bit(true)); // In sleep and stop modes.
154 pwr.cr1().read(); // Read to allow the pwr clock to enable
155 // 2. Set the DBP bit in the Power control register 1 (PWR_CR1) to enable access to the
156 // backup domain
157 pwr.cr1().modify( | _, w| w.dbp().bit(true)); // Unlock the backup domain
158 bounded_loop!(pwr.cr1().read().dbp().bit_is_clear(), Error::RegisterUnchanged);
159 } else if #[cfg(feature = "c0")] {
160 // todo: QC this.
161 rcc.apbenr1().modify(|_, w| {
162 w.pwren().bit(true);
163 w.rtcapben().bit(true)
164 });
165
166 rcc.apbsmenr1().modify(|_, w| w.rtcapbsmen().bit(true)); // In sleep and stop modes.
167 pwr.cr1().read(); // Read to allow the pwr clock to enable
168 } else if #[cfg(any(feature = "g0"))] {
169 rcc.apbenr1().modify(|_, w| {
170 w.pwren().bit(true);
171 w.rtcapben().bit(true)
172 });
173 rcc.apbsmenr1().modify(|_, w| w.rtcapbsmen().bit(true)); // In sleep and stop modes.
174 pwr.cr1().read();
175 pwr.cr1().modify( | _, w| w.dbp().bit(true));
176 bounded_loop!(pwr.cr1().read().dbp().bit_is_clear(), Error::RegisterUnchanged);
177 while pwr.cr1().read().dbp().bit_is_clear() {}
178 } else if #[cfg(feature = "h5")] {
179 rcc.apb3enr().modify(|_, w| w.rtcapben().bit(true));
180 rcc.apb3lpenr().modify(|_, w| w.rtcapblpen().bit(true)); // In sleep and stop modes.
181 pwr.dbpcr().read(); // read to allow the pwr clock to enable // todo??
182 pwr.dbpcr().modify( | _, w| w.dbp().bit(true));
183 bounded_loop!(pwr.dbpcr().read().dbp().bit_is_clear(), Error::RegisterUnchanged);
184 } else { // eg h7
185 rcc.apb4enr().modify(|_, w| w.rtcapben().bit(true));
186 rcc.apb4lpenr().modify(|_, w| w.rtcapblpen().bit(true)); // In sleep and stop modes.
187 pwr.cr1().read(); // read to allow the pwr clock to enable
188 pwr.cr1().modify( | _, w| w.dbp().bit(true));
189 bounded_loop!(pwr.cr1().read().dbp().bit_is_clear(), Error::RegisterUnchanged);
190 }
191 }
192
193 // Set up the LSI or LSE as required.
194 match config.clock_source {
195 RtcClockSource::Lsi => {
196 cfg_if! {
197 if #[cfg(feature = "wb")] {
198 // todo: LSI2?
199 rcc.csr().modify(|_, w| w.lsi1on().bit(true));
200 bounded_loop!(rcc.csr().read().lsi1rdy().bit_is_clear(), Error::RegisterUnchanged);
201 } else if #[cfg(feature = "h5")] {
202 rcc.bdcr().modify(|_, w| w.lsion().bit(true));
203 bounded_loop!(rcc.bdcr().read().lsirdy().bit_is_clear(), Error::RegisterUnchanged);
204 } else if #[cfg(feature = "c0")] {
205 rcc.csr2().modify(|_, w| w.lsion().bit(true));
206 bounded_loop!(rcc.csr2().read().lsirdy().bit_is_clear(), Error::RegisterUnchanged);
207 } else {
208 rcc.csr().modify(|_, w| w.lsion().bit(true));
209 bounded_loop!(rcc.csr().read().lsirdy().bit_is_clear(), Error::RegisterUnchanged);
210 }
211 }
212 }
213 #[cfg(not(feature = "c0"))]
214 RtcClockSource::Lse => {
215 // Can only set lsebyp when lse is off, so do this as a separate step.
216 rcc.bdcr()
217 .modify(|_, w| w.lsebyp().bit(config.bypass_lse_output));
218 rcc.bdcr().modify(|_, w| w.lseon().bit(true));
219 bounded_loop!(
220 rcc.bdcr().read().lserdy().bit_is_clear(),
221 Error::RegisterUnchanged
222 );
223 }
224 #[cfg(feature = "c0")]
225 RtcClockSource::Lse => {
226 // Can only set lsebyp when lse is off, so do this as a separate step.
227 rcc.csr1()
228 .modify(|_, w| w.lsebyp().bit(config.bypass_lse_output));
229 rcc.csr1().modify(|_, w| w.lseon().bit(true));
230
231 bounded_loop!(
232 rcc.csr1().read().lserdy().bit_is_clear(),
233 Error::RegisterUnchanged
234 );
235 }
236 _ => (),
237 }
238
239 #[cfg(not(feature = "c0"))]
240 rcc.bdcr().modify(|_, w| {
241 // 3. Select the RTC clock source in the Backup domain control register (RCC_BDCR).
242 unsafe { w.rtcsel().bits(rtc.config.clock_source as u8) };
243 // 4. Enable the RTC clock by setting the RTCEN [15] bit in the Backup domain control
244 // register (RCC_BDCR)
245 w.rtcen().bit(true)
246 });
247
248 #[cfg(feature = "c0")]
249 rcc.csr1().modify(|_, w| {
250 unsafe { w.rtcsel().bits(rtc.config.clock_source as u8) };
251 w.rtcen().bit(true)
252 });
253
254 rtc.edit_regs(false, |regs| {
255 regs.cr().modify(
256 |_, w| {
257 unsafe {
258 w.fmt()
259 .clear_bit() // 24hr
260 .osel()
261 /*
262 00: Output disabled
263 01: Alarm A output enabled
264 10: Alarm B output enabled
265 11: Wakeup output enabled
266 */
267 .bits(0b00)
268 .pol()
269 .clear_bit()
270 }
271 }, // pol high
272 );
273
274 regs.prer().modify(|_, w| unsafe {
275 w.prediv_s().bits(config.sync_prescaler);
276 w.prediv_a().bits(config.async_prescaler)
277 });
278 })?;
279
280 Ok(rtc)
281 }
282
283 /// Sets calendar clock to 24 hr format
284 pub fn set_24h_fmt(&mut self) -> Result<()> {
285 self.edit_regs(true, |regs| {
286 regs.cr().modify(|_, w| w.fmt().clear_bit());
287 })
288 }
289
290 /// Sets calendar clock to 12 hr format
291 pub fn set_12h_fmt(&mut self) -> Result<()> {
292 self.edit_regs(true, |regs| {
293 regs.cr().modify(|_, w| w.fmt().set_bit());
294 })
295 }
296
297 /// Reads current hour format selection
298 pub fn is_24h_fmt(&self) -> bool {
299 !self.regs.cr().read().fmt().bit()
300 }
301
302 // /// Setup the alarm. See AN4759, section 2.3.1.
303 // /// `sleep_time` is in ms. `Table 8` desribes these steps.
304 // pub fn set_alarm(&mut self, exti: &mut EXTI) {
305 // note: STM3241x and 42x have diff addresses, and are PAC incompatible!
306 // exti.imr1().modify(|_, w| w.mr18().unmasked());
307 // exti.rtsr1().modify(|_, w| w.tr18().bit(true));
308 // exti.ftsr1().modify(|_, w| w.tr18().clear_bit());
309 //
310 // self.edit_regs(false, |regs| {
311 // regs.cr().modify(|_, w| w.alrae().clear_bit());
312 //
313 // while regs.cr().read().alrae().bit_is_set() {}
314 //
315 // // todo: Set the alarm time. This function will be broken until this is accomplished.
316 // // self.regs.alrmar.modify(|_, w| unsafe {});
317 //
318 // regs.cr().modify(|_, w| w.alrae().bit(true));
319 // while regs.cr().read().alrae().bit_is_clear() {}
320 // })
321 // }
322
323 /// Helper fn, to do the important bits of setting the interval, with
324 /// the registers already unlocked.
325 fn set_wakeup_interval_inner(&mut self, sleep_time: f32) {
326 // Program the value into the wakeup timer
327 // Set WUT[15:0] in RTC_WUTR register. For RTC3 the user must also program
328 // WUTOCLR bits.
329 // See ref man Section 2.4.2: Maximum and minimum RTC wakeup period.
330 // todo check ref man register table
331
332 // See notes reffed below about WUCKSEL. We choose one of 3 "modes" described in AN4759 based
333 // on sleep time. If in the overlap area, choose the lower (more precise) mode.
334 // These all assume a 1hz `ck_spre`.
335 let lfe_freq = match self.config.clock_source {
336 RtcClockSource::Lse => 32_768.,
337 RtcClockSource::Lsi => 40_000.,
338 RtcClockSource::Hse => 250_000., // Assuming 8Mhz HSE, which may not be the case
339 };
340
341 // sleep_time = (1/lfe_freq) * div * (wutr + 1)
342 // res = 1/lfe_freq * div
343 // sleep_time = res * WUTR = 1/lfe_freq * div * (wutr + 1)
344 // wutr = sleep_time * lfe_freq / div - 1
345
346 let clock_cfg;
347 let wutr;
348
349 if sleep_time >= 0.00012207 && sleep_time < 32. {
350 let division;
351 let div;
352 if sleep_time < 4. {
353 division = WakeupDivision::Two; // Resolution: 61.035µs
354 div = 2.;
355 } else if sleep_time < 8. {
356 division = WakeupDivision::Four; // Resolution: 122.08µs
357 div = 4.;
358 } else if sleep_time < 16. {
359 division = WakeupDivision::Eight; // Resolution: 244.141
360 div = 8.;
361 } else {
362 division = WakeupDivision::Sixteen; // Resolution: 488.281
363 div = 16.;
364 }
365 clock_cfg = ClockConfig::One(division);
366 wutr = sleep_time * lfe_freq / div - 1.
367 } else if sleep_time < 65_536. {
368 // 32s to 18 hours (This mode goes 1s to 18 hours; we use Config1 for the overlap)
369 clock_cfg = ClockConfig::Two;
370 wutr = sleep_time; // This works out conveniently!
371 } else if sleep_time < 131_072. {
372 // 18 to 36 hours
373 clock_cfg = ClockConfig::Three;
374 wutr = sleep_time - 65_537.;
375 } else {
376 panic!("Wakeup period must be between 0122.07µs and 36 hours.")
377 }
378
379 #[cfg(not(feature = "c0"))]
380 self.regs
381 .wutr()
382 .modify(|_, w| unsafe { w.wut().bits(wutr as u16) });
383
384 // Select the desired clock source. Program WUCKSEL[2:0] bits in RTC_CR register.
385 // See ref man Section 2.4.2: Maximum and minimum RTC wakeup period.
386 // todo: Check register docs and see what to set here.
387
388 // See AN4759, Table 13. RM, 27.3.6
389
390 // When ck_spre frequency is 1Hz, this allows to achieve a wakeup time from 1 s to
391 // around 36 hours with one-second resolution. This large programmable time range is
392 // divided in 2 parts:
393 // – from 1s to 18 hours when WUCKSEL [2:1] = 10
394 // – and from around 18h to 36h when WUCKSEL[2:1] = 11. In this last case 216 is
395 // added to the 16-bit counter current value.When the initialization sequence is
396 // complete (see Programming the wakeup timer on page 781), the timer starts
397 // counting down.When the wakeup function is enabled, the down-counting remains
398 // active in low-power modes. In addition, when it reaches 0, the WUTF flag is set in
399 // the RTC_ISR register, and the wakeup counter is automatically reloaded with its
400 // reload value (RTC_WUTR register value).
401 let word = match clock_cfg {
402 ClockConfig::One(division) => match division {
403 WakeupDivision::Sixteen => 0b000,
404 WakeupDivision::Eight => 0b001,
405 WakeupDivision::Four => 0b010,
406 WakeupDivision::Two => 0b011,
407 },
408 // for 2 and 3, what does `x` mean in the docs? Best guess is it doesn't matter.
409 ClockConfig::Two => 0b100, // eg 1s to 18h.
410 ClockConfig::Three => 0b110, // eg 18h to 36h
411 };
412
413 #[cfg(not(feature = "c0"))]
414 // 000: RTC/16 clock is selected
415 // 001: RTC/8 clock is selected
416 // 010: RTC/4 clock is selected
417 // 011: RTC/2 clock is selected
418 // 10x: ck_spre (usually 1 Hz) clock is selected
419 // 11x: ck_spre (usually 1 Hz) clock is selected and 216 is added to the WUT counter value
420 self.regs
421 .cr()
422 .modify(|_, w| unsafe { w.wucksel().bits(word) });
423 }
424
425 #[cfg(not(any(feature = "f373", feature = "c0")))]
426 /// Setup periodic auto-wakeup interrupts. See ST AN4759, Table 11, and more broadly,
427 /// section 2.4.1. See also reference manual, section 27.5.
428 /// In addition to running this function, set up the interrupt handling function by
429 /// adding the line `make_rtc_interrupt_handler!(RTC_WKUP);` somewhere in the body
430 /// of your program.
431 /// `sleep_time` is in ms.
432 pub fn set_wakeup(&mut self, sleep_time: f32) -> Result<()> {
433 // Configure and enable the EXTI line corresponding to the Wakeup timer even in
434 // interrupt mode and select the rising edge sensitivity.
435 // Sleep time is in seconds. See L4 RM, Table 47 to see that exti line 20 is the RTC wakeup
436 // timer. This appears to be the case for all families.
437
438 // L4 RM, 5.3.11: To wakeup from Stop mode with an RTC wakeup event, it is necessary to:
439 // • Configure the EXTI Line 20 to be sensitive to rising edge
440 // • Configure the RTC to generate the RTC alarm
441
442 let exti = unsafe { &(*EXTI::ptr()) };
443
444 cfg_if! {
445 if #[cfg(any(feature = "f3", feature = "l4"))] {
446 exti.imr1().modify(|_, w| w.mr20().unmasked());
447 exti.rtsr1().modify(|_, w| w.tr20().bit(true));
448 exti.ftsr1().modify(|_, w| w.tr20().clear_bit());
449 } else if #[cfg(feature = "f4")] {
450 exti.imr().modify(|_, w| w.mr20().unmasked());
451 exti.rtsr().modify(|_, w| w.tr20().bit(true));
452 exti.ftsr().modify(|_, w| w.tr20().clear_bit());
453 } else if #[cfg(feature = "g4")]{
454 exti.imr1().modify(|_, w| w.im20().unmasked());
455 exti.rtsr1().modify(|_, w| w.rt20().bit(true));
456 exti.ftsr1().modify(|_, w| w.ft20().clear_bit());
457 } else if #[cfg(any(feature = "l5", feature = "g0", feature = "wb", feature = "wl", feature = "h5"))] {
458 // exti.imr1().modify(|_, w| w.mr20().unmasked());
459 // exti.rtsr1().modify(|_, w| w.rt20().bit(true));
460 // exti.ftsr1().modify(|_, w| w.ft20().clear_bit());
461
462 } else if #[cfg(any(feature = "h747cm4", feature = "h747cm7"))] {
463 exti.c1imr1().modify(|_, w| w.mr20().unmasked());
464 exti.rtsr1().modify(|_, w| w.tr20().bit(true));
465 exti.ftsr1().modify(|_, w| w.tr20().clear_bit());
466 } else { // H7
467 exti.cpuimr1().modify(|_, w| w.mr20().unmasked());
468 exti.rtsr1().modify(|_, w| w.tr20().bit(true));
469 exti.ftsr1().modify(|_, w| w.tr20().clear_bit());
470 }
471 }
472
473 // We can't use the `edit_regs` abstraction here due to being unable to call a method
474 // in the closure.
475 self.regs.wpr().write(|w| unsafe { w.bits(0xCA) });
476 self.regs.wpr().write(|w| unsafe { w.bits(0x53) });
477
478 // Disable the wakeup timer. Clear WUTE bit in RTC_CR register
479 self.regs.cr().modify(|_, w| w.wute().clear_bit());
480
481 // Ensure access to Wakeup auto-reload counter and bits WUCKSEL[2:0] is allowed.
482 // Poll WUTWF until it is set in RTC_ISR (RTC2)/RTC_ICSR (RTC3) (May not be avail on F3)
483 cfg_if! {
484 if #[cfg(rtc_icsr)] {
485 bounded_loop!(self.regs.icsr().read().wutwf().bit_is_clear(), Error::RegisterUnchanged);
486 } else {
487 bounded_loop!(self.regs.isr().read().wutwf().bit_is_clear(), Error::RegisterUnchanged);
488 }
489 }
490
491 self.set_wakeup_interval_inner(sleep_time);
492 // Re-enable the wakeup timer. Set WUTE bit in RTC_CR register.
493 // The wakeup timer restarts counting down.
494 self.regs.cr().modify(|_, w| w.wute().bit(true));
495
496 // Enable the wakeup timer interrupt.
497 self.regs.cr().modify(|_, w| w.wutie().bit(true));
498
499 cfg_if! {
500 if #[cfg(rtc_icsr)] {
501 self.regs.scr().write(|w| w.cwutf().bit(true));
502 } else {
503 self.regs.isr().modify(|_, w| w.wutf().clear_bit());
504 }
505 }
506
507 self.regs.wpr().write(|w| unsafe { w.bits(0xFF) });
508
509 Ok(())
510 }
511
512 #[cfg(not(feature = "c0"))]
513 /// Enable the wakeup timer.
514 pub fn enable_wakeup(&mut self) {
515 unsafe {
516 self.regs.wpr().write(|w| w.bits(0xCA));
517 self.regs.wpr().write(|w| w.bits(0x53));
518 self.regs.cr().modify(|_, w| w.wute().bit(true));
519 self.regs.wpr().write(|w| w.bits(0xFF));
520 }
521 }
522
523 #[cfg(not(feature = "c0"))]
524 /// Disable the wakeup timer.
525 pub fn disable_wakeup(&mut self) {
526 unsafe {
527 self.regs.wpr().write(|w| w.bits(0xCA));
528 self.regs.wpr().write(|w| w.bits(0x53));
529 self.regs.cr().modify(|_, w| w.wute().clear_bit());
530 self.regs.wpr().write(|w| w.bits(0xFF));
531 }
532 }
533
534 #[cfg(not(feature = "c0"))]
535 /// Change the sleep time for the auto wakeup, after it's been set up.
536 /// Sleep time is in MS. Major DRY from `set_wakeup`.
537 pub fn set_wakeup_interval(&mut self, sleep_time: f32) -> Result<()> {
538 // `sleep_time` is in seconds.
539 // See comments in `set_auto_wakeup` for what these writes do.
540
541 // We can't use the `edit_regs` abstraction here due to being unable to call a method
542 // in the closure.
543 self.regs.wpr().write(|w| unsafe { w.bits(0xCA) });
544 self.regs.wpr().write(|w| unsafe { w.bits(0x53) });
545
546 let started_enabled = self.regs.cr().read().wute().bit_is_set();
547 if started_enabled {
548 self.regs.cr().modify(|_, w| w.wute().clear_bit());
549 }
550
551 cfg_if! {
552 if #[cfg(rtc_icsr)] {
553 bounded_loop!(self.regs.icsr().read().wutwf().bit_is_clear(), Error::RegisterUnchanged);
554 } else {
555 bounded_loop!(self.regs.isr().read().wutwf().bit_is_clear(), Error::RegisterUnchanged);
556 }
557 }
558
559 self.set_wakeup_interval_inner(sleep_time);
560
561 if started_enabled {
562 self.regs.cr().modify(|_, w| w.wute().bit(true));
563 }
564
565 self.regs.wpr().write(|w| unsafe { w.bits(0xFF) });
566
567 Ok(())
568 }
569
570 #[cfg(not(feature = "c0"))]
571 /// Clears the wakeup flag. Must be cleared manually after every RTC wakeup.
572 /// Alternatively, you could call this in the RTC wakeup interrupt handler.
573 pub fn clear_wakeup_flag(&mut self) -> Result<()> {
574 self.edit_regs(false, |regs| {
575 regs.cr().modify(|_, w| w.wute().clear_bit());
576
577 cfg_if! {
578 if #[cfg(any(feature = "l412", feature = "l5", feature = "g0", feature = "g4", feature = "l412",
579 feature = "wl", feature = "h5", feature = "c0"))] {
580 regs.scr().write(|w| w.cwutf().bit(true));
581 } else {
582 // Note that we clear this by writing 0, which isn't
583 // the standard convention, eg in other families, and
584 // other peripherals.
585 regs.isr().modify(|_, w| w.wutf().clear_bit());
586 }
587 }
588
589 regs.cr().modify(|_, w| w.wute().bit(true));
590 })
591 }
592
593 /// this function is used to disable write protection when modifying an RTC register.
594 /// It also optionally handles the additional step required to set a clock or calendar
595 /// value.
596 fn edit_regs<F>(&mut self, init_mode: bool, mut closure: F) -> Result<()>
597 where
598 F: FnMut(&mut RTC),
599 {
600 // Disable write protection
601 // This is safe, as we're only writin the correct and expected values.
602 self.regs.wpr().write(|w| unsafe { w.bits(0xCA) });
603 self.regs.wpr().write(|w| unsafe { w.bits(0x53) });
604
605 // todo: L4 has ICSR and ISR regs. Maybe both for backwards compat?
606
607 cfg_if! {
608 if #[cfg(rtc_icsr)] {
609 // Enter init mode if required. This is generally used to edit the clock or calendar,
610 // but not for initial enabling steps.
611 if init_mode && self.regs.icsr().read().initf().bit_is_clear() {
612 // are we already in init mode?
613 self.regs.icsr().modify(|_, w| w.init().bit(true));
614 // wait to return to init state
615 bounded_loop!(self.regs.icsr().read().initf().bit_is_clear(), Error::RegisterUnchanged);
616 }
617
618 // Edit the regs specified in the closure, now that they're writable.
619 closure(&mut self.regs);
620
621 if init_mode {
622 self.regs.icsr().modify(|_, w| w.init().clear_bit()); // Exits init mode
623 bounded_loop!(self.regs.icsr().read().initf().bit_is_set(), Error::RegisterUnchanged);
624 }
625 // } else if #[cfg(feature = "wl")] {
626 // if init_mode && self.regs.isr().read().initf().bit_is_clear() {
627 // self.regs.icsr().modify(|_, w| w.init().bit(true));
628 // while self.regs.icsr().read().initf().bit_is_clear() {} // wait to return to init state
629 // }
630
631 // closure(&mut self.regs);
632
633 // if init_mode {
634 // self.regs.icsr().modify(|_, w| w.init().clear_bit()); // Exits init mode
635 // while self.regs.sr().read().initf().bit_is_set() {}
636 // }
637 } else {
638 if init_mode && self.regs.isr().read().initf().bit_is_clear() {
639 self.regs.isr().modify(|_, w| w.init().bit(true));
640 // wait to return to init state
641 bounded_loop!(self.regs.isr().read().initf().bit_is_clear(), Error::RegisterUnchanged);
642 }
643
644 closure(&mut self.regs);
645
646 if init_mode {
647 self.regs.isr().modify(|_, w| w.init().clear_bit()); // Exits init mode
648 bounded_loop!(self.regs.isr().read().initf().bit_is_set(), Error::RegisterUnchanged);
649 }
650 }
651 }
652
653 // Re-enable write protection.
654 // This is safe, as the field accepts the full range of 8-bit values.
655 self.regs.wpr().write(|w| unsafe { w.bits(0xFF) });
656
657 Ok(())
658 }
659
660 /// set time using NaiveTime (ISO 8601 time without timezone)
661 /// Hour format is 24h
662 pub fn set_time(&mut self, time: &NaiveTime) -> Result<()> {
663 self.set_24h_fmt()?;
664 let (ht, hu) = bcd2_encode(time.hour())?;
665 let (mnt, mnu) = bcd2_encode(time.minute())?;
666 let (st, su) = bcd2_encode(time.second())?;
667
668 self.edit_regs(true, |regs| {
669 regs.tr().write(|w| unsafe {
670 w.ht().bits(ht);
671 w.hu().bits(hu);
672 w.mnt().bits(mnt);
673 w.mnu().bits(mnu);
674 w.st().bits(st);
675 w.su().bits(su);
676 w.pm().clear_bit()
677 });
678 })
679 }
680
681 /// Set the seconds component of the RTC's current time.
682 pub fn set_seconds(&mut self, seconds: u8) -> Result<()> {
683 if seconds > 59 {
684 return Err(Error::RtcError(RtcError::InvalidInputData));
685 }
686 let (st, su) = bcd2_encode(seconds as u32)?;
687 self.edit_regs(true, |regs| {
688 regs.tr()
689 .modify(|_, w| unsafe { w.st().bits(st).su().bits(su) });
690 })
691 }
692
693 /// Set the minutes component of the RTC's current time.
694 pub fn set_minutes(&mut self, minutes: u8) -> Result<()> {
695 if minutes > 59 {
696 return Err(Error::RtcError(RtcError::InvalidInputData));
697 }
698 let (mnt, mnu) = bcd2_encode(minutes as u32)?;
699 self.edit_regs(true, |regs| {
700 regs.tr()
701 .modify(|_, w| unsafe { w.mnt().bits(mnt).mnu().bits(mnu) });
702 })
703 }
704
705 /// Set the hours component of the RTC's current time.
706 pub fn set_hours(&mut self, hours: u8) -> Result<()> {
707 let (ht, hu) = bcd2_encode(hours as u32)?;
708
709 self.edit_regs(true, |regs| {
710 regs.tr()
711 .modify(|_, w| unsafe { w.ht().bits(ht).hu().bits(hu) });
712 })
713 }
714
715 /// Set the weekday component of the RTC's current date.
716 pub fn set_weekday(&mut self, weekday: u8) -> Result<()> {
717 if !(1..=7).contains(&weekday) {
718 return Err(Error::RtcError(RtcError::InvalidInputData));
719 }
720 self.edit_regs(true, |regs| {
721 regs.dr().modify(|_, w| unsafe { w.wdu().bits(weekday) });
722 })
723 }
724
725 /// Set the day component of the RTC's current date.
726 pub fn set_day(&mut self, day: u8) -> Result<()> {
727 if !(1..=31).contains(&day) {
728 return Err(Error::RtcError(RtcError::InvalidInputData));
729 }
730 let (dt, du) = bcd2_encode(day as u32)?;
731 self.edit_regs(true, |regs| {
732 regs.dr()
733 .modify(unsafe { |_, w| w.dt().bits(dt).du().bits(du) });
734 })
735 }
736
737 /// Set the month component of the RTC's current date.
738 pub fn set_month(&mut self, month: u8) -> Result<()> {
739 if !(1..=12).contains(&month) {
740 return Err(Error::RtcError(RtcError::InvalidInputData));
741 }
742 let (mt, mu) = bcd2_encode(month as u32)?;
743 self.edit_regs(true, |regs| {
744 regs.dr()
745 .modify(|_, w| unsafe { w.mt().bit(mt > 0).mu().bits(mu) });
746 })
747 }
748
749 /// Set the year component of the RTC's current date.
750 pub fn set_year(&mut self, year: u16) -> Result<()> {
751 if !(1970..=2038).contains(&year) {
752 // todo: Is this right?
753 return Err(Error::RtcError(RtcError::InvalidInputData));
754 }
755 let (yt, yu) = bcd2_encode(year as u32 - 2_000)?;
756 // todo RTC is 2000 based ? Not sure best way to handle this.
757 self.edit_regs(true, |regs| {
758 regs.dr()
759 .modify(|_, w| unsafe { w.yt().bits(yt).yu().bits(yu) });
760 })
761 }
762
763 /// Set the date using NaiveDate (ISO 8601 calendar date without timezone).
764 /// WeekDay is set using the `set_weekday` method
765 pub fn set_date(&mut self, date: &NaiveDate) -> Result<()> {
766 if date.year() < 1970 {
767 // todo: Is this right?
768 return Err(Error::RtcError(RtcError::InvalidInputData));
769 }
770
771 let (yt, yu) = bcd2_encode((date.year() - 2_000) as u32)?;
772 let (mt, mu) = bcd2_encode(date.month())?;
773 let (dt, du) = bcd2_encode(date.day())?;
774
775 self.edit_regs(true, |regs| {
776 regs.dr().write(|w| unsafe {
777 w.dt().bits(dt);
778 w.du().bits(du);
779 w.mt().bit(mt > 0);
780 w.mu().bits(mu);
781 w.yt().bits(yt);
782 w.yu().bits(yu)
783 });
784 })
785 }
786
787 /// Set the current datetime.
788 pub fn set_datetime(&mut self, date: &NaiveDateTime) -> Result<()> {
789 if date.year() < 1970 {
790 // todo is this right?
791 return Err(Error::RtcError(RtcError::InvalidInputData));
792 }
793
794 self.set_24h_fmt()?;
795 let (yt, yu) = bcd2_encode((date.year() - 2_000) as u32)?;
796 let (mt, mu) = bcd2_encode(date.month())?;
797 let (dt, du) = bcd2_encode(date.day())?;
798
799 let (ht, hu) = bcd2_encode(date.hour())?;
800 let (mnt, mnu) = bcd2_encode(date.minute())?;
801 let (st, su) = bcd2_encode(date.second())?;
802
803 self.edit_regs(true, |regs| {
804 regs.dr().write(|w| unsafe {
805 w.dt().bits(dt);
806 w.du().bits(du);
807 w.mt().bit(mt > 0);
808 w.mu().bits(mu);
809 w.yt().bits(yt);
810 w.yu().bits(yu)
811 });
812 })?;
813
814 self.edit_regs(true, |regs| {
815 regs.tr().write(|w| unsafe {
816 w.ht().bits(ht);
817 w.hu().bits(hu);
818 w.mnt().bits(mnt);
819 w.mnu().bits(mnu);
820 w.st().bits(st);
821 w.su().bits(su);
822 w.pm().clear_bit()
823 });
824 })?;
825
826 Ok(())
827 }
828
829 /// Get the seconds component of the current time.
830 pub fn get_seconds(&mut self) -> u8 {
831 let tr = self.regs.tr().read();
832 bcd2_decode(tr.st().bits(), tr.su().bits()) as u8
833 }
834
835 /// Get the minutes component of the current time.
836 pub fn get_minutes(&mut self) -> u8 {
837 let tr = self.regs.tr().read();
838 bcd2_decode(tr.mnt().bits(), tr.mnu().bits()) as u8
839 }
840
841 /// Get the hours component of the current time.
842 pub fn get_hours(&mut self) -> u8 {
843 let tr = self.regs.tr().read();
844 bcd2_decode(tr.ht().bits(), tr.hu().bits()) as u8
845 }
846
847 /// Get the current time.
848 pub fn get_time(&mut self) -> NaiveTime {
849 NaiveTime::from_hms_opt(
850 self.get_hours().into(),
851 self.get_minutes().into(),
852 self.get_seconds().into(),
853 )
854 .unwrap()
855 }
856
857 /// Get the weekday component of the current date.
858 pub fn get_weekday(&mut self) -> u8 {
859 let dr = self.regs.dr().read();
860 bcd2_decode(dr.wdu().bits(), 0x00) as u8
861 }
862
863 /// Get the day component of the current date.
864 pub fn get_day(&mut self) -> u8 {
865 let dr = self.regs.dr().read();
866 bcd2_decode(dr.dt().bits(), dr.du().bits()) as u8
867 }
868
869 /// Get the month component of the current date.
870 pub fn get_month(&mut self) -> u8 {
871 let dr = self.regs.dr().read();
872 let mt: u8 = if dr.mt().bit() { 1 } else { 0 };
873 bcd2_decode(mt, dr.mu().bits()) as u8
874 }
875
876 /// Get the year component of the current date.
877 pub fn get_year(&mut self) -> u16 {
878 let dr = self.regs.dr().read();
879 (bcd2_decode(dr.yt().bits(), dr.yu().bits()) + 2000) as u16
880 }
881
882 /// Get the current date.
883 pub fn get_date(&mut self) -> NaiveDate {
884 NaiveDate::from_ymd_opt(
885 self.get_year().into(),
886 self.get_month().into(),
887 self.get_day().into(),
888 )
889 .unwrap()
890 }
891
892 /// Get the current datetime.
893 pub fn get_datetime(&mut self) -> NaiveDateTime {
894 NaiveDate::from_ymd_opt(
895 self.get_year().into(),
896 self.get_month().into(),
897 self.get_day().into(),
898 )
899 .unwrap()
900 .and_hms_opt(
901 self.get_hours().into(),
902 self.get_minutes().into(),
903 self.get_seconds().into(),
904 )
905 .unwrap()
906 }
907}
908
909// Two 32-bit registers (RTC_TR and RTC_DR) contain the seconds, minutes, hours (12- or 24-hour format), day (day
910// of week), date (day of month), month, and year, expressed in binary coded decimal format
911// (BCD). The sub-seconds value is also available in binary format.
912//
913// The following helper functions encode into BCD format from integer and
914// decode to an integer from a BCD value respectively.
915fn bcd2_encode(word: u32) -> Result<(u8, u8)> {
916 let l = match (word / 10).try_into() {
917 Ok(v) => v,
918 Err(_) => {
919 return Err(Error::RtcError(RtcError::InvalidInputData));
920 }
921 };
922 let r = match (word % 10).try_into() {
923 Ok(v) => v,
924 Err(_) => {
925 return Err(Error::RtcError(RtcError::InvalidInputData));
926 }
927 };
928
929 Ok((l, r))
930}
931
932fn bcd2_decode(fst: u8, snd: u8) -> u32 {
933 (fst * 10 + snd).into()
934}