stm32_hal2/rtc.rs
1//! Support for the Real Time Clock (RTC) peripheral.
2//! For more details, see
3//! [ST AN4759](https:/www.st.com%2Fresource%2Fen%2Fapplication_note%2Fdm00226326-using-the-hardware-realtime-clock-rtc-and-the-tamper-management-unit-tamp-with-stm32-microcontrollers-stmicroelectronics.pdf&usg=AOvVaw3PzvL2TfYtwS32fw-Uv37h)
4
5//! Uses [Chrono](https://docs.rs/chrono) for dates and times.
6
7use core::convert::TryInto;
8
9use cfg_if::cfg_if;
10use chrono::{Datelike, NaiveDate, NaiveDateTime, NaiveTime, Timelike};
11
12use crate::{
13 error::{Error, Result},
14 pac::{EXTI, PWR, RCC, RTC},
15 util::bounded_loop,
16};
17
18// todo: QC use of ICSR vice SR and ISR wherever used in this module!
19
20/// RTC Clock source.
21#[derive(Clone, Copy, Debug, PartialEq)]
22#[repr(u8)]
23pub enum RtcClockSource {
24 /// 01: LSE oscillator clock used as RTC clock
25 Lse = 0b01,
26 /// 10: LSI oscillator clock used as RTC clock
27 Lsi = 0b10,
28 /// 11: HSE oscillator clock divided by 32 used as RTC clock
29 Hse = 0b11,
30}
31
32/// RTC error type.
33#[derive(Debug, Clone, Copy, Eq, PartialEq, defmt::Format)]
34pub enum RtcError {
35 /// Invalid input error.
36 InvalidInputData,
37}
38
39/// See ref man, section 27.6.3, or AN4769, section 2.4.2.
40/// To be used with WakeupPrescaler
41#[derive(Clone, Copy, Debug)]
42enum WakeupDivision {
43 Sixteen,
44 Eight,
45 Four,
46 Two,
47}
48
49/// See AN4759, table 13.
50#[derive(Clone, Copy, Debug)]
51enum ClockConfig {
52 One(WakeupDivision),
53 Two,
54 Three,
55}
56
57/// Interrupt event
58pub enum Event {
59 WakeupTimer,
60 AlarmA,
61 AlarmB,
62 Timestamp,
63}
64
65pub enum Alarm {
66 AlarmA,
67 AlarmB,
68}
69
70impl From<Alarm> for Event {
71 fn from(a: Alarm) -> Self {
72 match a {
73 Alarm::AlarmA => Event::AlarmA,
74 Alarm::AlarmB => Event::AlarmB,
75 }
76 }
77}
78
79/// Represents a Real Time Clock (RTC) peripheral.
80pub struct Rtc {
81 /// RTC Peripheral register definition
82 regs: RTC,
83 config: RtcConfig,
84}
85
86#[derive(Copy, Clone, Debug, PartialEq)]
87/// Configuration data for the RTC.
88pub struct RtcConfig {
89 /// RTC clock source. Defaults to LSI (Low speed internal oscillator)
90 pub clock_source: RtcClockSource,
91 /// Asynchronous prescaler factor
92 /// This is the asynchronous division factor:
93 /// ck_apre frequency = RTCCLK frequency/(PREDIV_A+1)
94 /// ck_apre drives the subsecond register. Defaults to 127.
95 pub async_prescaler: u8,
96 /// Synchronous prescaler factor
97 /// This is the synchronous division factor:
98 /// ck_spre frequency = ck_apre frequency/(PREDIV_S+1)
99 /// ck_spre must be 1Hz. Defaults to 255.
100 pub sync_prescaler: u16,
101 /// Bypass LSE output - eg if you're using a self-powered external oscillator. This
102 /// saves power, and lets you use the LSE output pin as a GPIO.
103 pub bypass_lse_output: bool,
104}
105
106impl Default for RtcConfig {
107 /// LSI with prescalers assuming 32.768 kHz.
108 /// Raw sub-seconds in 1/256.
109 fn default() -> Self {
110 RtcConfig {
111 clock_source: RtcClockSource::Lsi,
112 async_prescaler: 127,
113 sync_prescaler: 255,
114 bypass_lse_output: false,
115 }
116 }
117}
118
119impl Rtc {
120 /// Initialize the RTC, including configuration register writes.
121 pub fn new(regs: RTC, config: RtcConfig) -> Result<Self> {
122 let mut rtc = Self { regs, config };
123
124 // Enable the peripheral clock for communication
125 // You must enable the `pwren()` bit before making RTC register writes, or they won't stay
126 // set. Enable the backup interface by setting PWREN
127
128 // Note that unlock other RCC enableing processes, there's no corresponding reset
129 // field here.
130
131 // See L4 RM, `Backup domain access` section.
132 let rcc = unsafe { &(*RCC::ptr()) };
133 let pwr = unsafe { &(*PWR::ptr()) };
134
135 cfg_if! {
136 if #[cfg(any(feature = "f3", feature = "f4"))] {
137 rcc.apb1enr().modify(|_, w| w.pwren().bit(true));
138 pwr.cr().read(); // read to allow the pwr clock to enable
139 pwr.cr().modify(|_, w| w.dbp().bit(true));
140 bounded_loop!(pwr.cr().read().dbp().bit_is_clear(), Error::RegisterUnchanged);
141 } else if #[cfg(any(feature = "l4", feature = "l5", feature = "g4", feature = "l412", feature = "wb", feature = "wl"))] {
142 // 1. Enable the power interface clock by setting the PWREN bits in the Section 6.4.18:
143 // APB1 peripheral clock enable register 1 (RCC_APB1ENR1)
144 #[cfg(not(any(feature = "wb", feature = "wl")))]
145 rcc.apb1enr1().modify(|_, w| {
146 w.pwren().bit(true);
147 w.rtcapben().bit(true)
148 });
149 #[cfg(any(feature = "wb", feature = "wl"))]
150 rcc.apb1enr1().modify(|_, w| w.rtcapben().bit(true));
151
152 rcc.apb1smenr1().modify(|_, w| w.rtcapbsmen().bit(true)); // In sleep and stop modes.
153 pwr.cr1().read(); // Read to allow the pwr clock to enable
154 // 2. Set the DBP bit in the Power control register 1 (PWR_CR1) to enable access to the
155 // backup domain
156 pwr.cr1().modify( | _, w| w.dbp().bit(true)); // Unlock the backup domain
157 bounded_loop!(pwr.cr1().read().dbp().bit_is_clear(), Error::RegisterUnchanged);
158 } else if #[cfg(feature = "c0")] {
159 // todo: QC this.
160 rcc.apbenr1().modify(|_, w| {
161 w.pwren().bit(true);
162 w.rtcapben().bit(true)
163 });
164
165 rcc.apbsmenr1().modify(|_, w| w.rtcapbsmen().bit(true)); // In sleep and stop modes.
166 pwr.cr1().read(); // Read to allow the pwr clock to enable
167 } else if #[cfg(any(feature = "g0"))] {
168 rcc.apbenr1().modify(|_, w| {
169 w.pwren().bit(true);
170 w.rtcapben().bit(true)
171 });
172 rcc.apbsmenr1().modify(|_, w| w.rtcapbsmen().bit(true)); // In sleep and stop modes.
173 pwr.cr1().read();
174 pwr.cr1().modify( | _, w| w.dbp().bit(true));
175 bounded_loop!(pwr.cr1().read().dbp().bit_is_clear(), Error::RegisterUnchanged);
176 while pwr.cr1().read().dbp().bit_is_clear() {}
177 } else if #[cfg(feature = "h5")] {
178 rcc.apb3enr().modify(|_, w| w.rtcapben().bit(true));
179 rcc.apb3lpenr().modify(|_, w| w.rtcapblpen().bit(true)); // In sleep and stop modes.
180 pwr.dbpcr().read(); // read to allow the pwr clock to enable // todo??
181 pwr.dbpcr().modify( | _, w| w.dbp().bit(true));
182 bounded_loop!(pwr.dbpcr().read().dbp().bit_is_clear(), Error::RegisterUnchanged);
183 } else { // eg h7
184 rcc.apb4enr().modify(|_, w| w.rtcapben().bit(true));
185 rcc.apb4lpenr().modify(|_, w| w.rtcapblpen().bit(true)); // In sleep and stop modes.
186 pwr.cr1().read(); // read to allow the pwr clock to enable
187 pwr.cr1().modify( | _, w| w.dbp().bit(true));
188 bounded_loop!(pwr.cr1().read().dbp().bit_is_clear(), Error::RegisterUnchanged);
189 }
190 }
191
192 // Set up the LSI or LSE as required.
193 match config.clock_source {
194 RtcClockSource::Lsi => {
195 cfg_if! {
196 if #[cfg(feature = "wb")] {
197 // todo: LSI2?
198 rcc.csr().modify(|_, w| w.lsi1on().bit(true));
199 bounded_loop!(rcc.csr().read().lsi1rdy().bit_is_clear(), Error::RegisterUnchanged);
200 } else if #[cfg(feature = "h5")] {
201 rcc.bdcr().modify(|_, w| w.lsion().bit(true));
202 bounded_loop!(rcc.bdcr().read().lsirdy().bit_is_clear(), Error::RegisterUnchanged);
203 } else if #[cfg(feature = "c0")] {
204 rcc.csr2().modify(|_, w| w.lsion().bit(true));
205 bounded_loop!(rcc.csr2().read().lsirdy().bit_is_clear(), Error::RegisterUnchanged);
206 } else {
207 rcc.csr().modify(|_, w| w.lsion().bit(true));
208 bounded_loop!(rcc.csr().read().lsirdy().bit_is_clear(), Error::RegisterUnchanged);
209 }
210 }
211 }
212 #[cfg(not(feature = "c0"))]
213 RtcClockSource::Lse => {
214 // Can only set lsebyp when lse is off, so do this as a separate step.
215 rcc.bdcr()
216 .modify(|_, w| w.lsebyp().bit(config.bypass_lse_output));
217 rcc.bdcr().modify(|_, w| w.lseon().bit(true));
218 bounded_loop!(
219 rcc.bdcr().read().lserdy().bit_is_clear(),
220 Error::RegisterUnchanged
221 );
222 }
223 #[cfg(feature = "c0")]
224 RtcClockSource::Lse => {
225 // Can only set lsebyp when lse is off, so do this as a separate step.
226 rcc.csr1()
227 .modify(|_, w| w.lsebyp().bit(config.bypass_lse_output));
228 rcc.csr1().modify(|_, w| w.lseon().bit(true));
229
230 bounded_loop!(
231 rcc.csr1().read().lserdy().bit_is_clear(),
232 Error::RegisterUnchanged
233 );
234 }
235 _ => (),
236 }
237
238 #[cfg(not(feature = "c0"))]
239 rcc.bdcr().modify(|_, w| {
240 // 3. Select the RTC clock source in the Backup domain control register (RCC_BDCR).
241 unsafe { w.rtcsel().bits(rtc.config.clock_source as u8) };
242 // 4. Enable the RTC clock by setting the RTCEN [15] bit in the Backup domain control
243 // register (RCC_BDCR)
244 w.rtcen().bit(true)
245 });
246
247 #[cfg(feature = "c0")]
248 rcc.csr1().modify(|_, w| {
249 unsafe { w.rtcsel().bits(rtc.config.clock_source as u8) };
250 w.rtcen().bit(true)
251 });
252
253 rtc.edit_regs(false, |regs| {
254 regs.cr().modify(
255 |_, w| {
256 unsafe {
257 w.fmt()
258 .clear_bit() // 24hr
259 .osel()
260 /*
261 00: Output disabled
262 01: Alarm A output enabled
263 10: Alarm B output enabled
264 11: Wakeup output enabled
265 */
266 .bits(0b00)
267 .pol()
268 .clear_bit()
269 }
270 }, // pol high
271 );
272
273 regs.prer().modify(|_, w| unsafe {
274 w.prediv_s().bits(config.sync_prescaler);
275 w.prediv_a().bits(config.async_prescaler)
276 });
277 })?;
278
279 Ok(rtc)
280 }
281
282 /// Sets calendar clock to 24 hr format
283 pub fn set_24h_fmt(&mut self) -> Result<()> {
284 self.edit_regs(true, |regs| {
285 regs.cr().modify(|_, w| w.fmt().clear_bit());
286 })
287 }
288
289 /// Sets calendar clock to 12 hr format
290 pub fn set_12h_fmt(&mut self) -> Result<()> {
291 self.edit_regs(true, |regs| {
292 regs.cr().modify(|_, w| w.fmt().set_bit());
293 })
294 }
295
296 /// Reads current hour format selection
297 pub fn is_24h_fmt(&self) -> bool {
298 !self.regs.cr().read().fmt().bit()
299 }
300
301 // /// Setup the alarm. See AN4759, section 2.3.1.
302 // /// `sleep_time` is in ms. `Table 8` desribes these steps.
303 // pub fn set_alarm(&mut self, exti: &mut EXTI) {
304 // note: STM3241x and 42x have diff addresses, and are PAC incompatible!
305 // exti.imr1().modify(|_, w| w.mr18().unmasked());
306 // exti.rtsr1().modify(|_, w| w.tr18().bit(true));
307 // exti.ftsr1().modify(|_, w| w.tr18().clear_bit());
308 //
309 // self.edit_regs(false, |regs| {
310 // regs.cr().modify(|_, w| w.alrae().clear_bit());
311 //
312 // while regs.cr().read().alrae().bit_is_set() {}
313 //
314 // // todo: Set the alarm time. This function will be broken until this is accomplished.
315 // // self.regs.alrmar.modify(|_, w| unsafe {});
316 //
317 // regs.cr().modify(|_, w| w.alrae().bit(true));
318 // while regs.cr().read().alrae().bit_is_clear() {}
319 // })
320 // }
321
322 /// Helper fn, to do the important bits of setting the interval, with
323 /// the registers already unlocked.
324 fn set_wakeup_interval_inner(&mut self, sleep_time: f32) {
325 // Program the value into the wakeup timer
326 // Set WUT[15:0] in RTC_WUTR register. For RTC3 the user must also program
327 // WUTOCLR bits.
328 // See ref man Section 2.4.2: Maximum and minimum RTC wakeup period.
329 // todo check ref man register table
330
331 // See notes reffed below about WUCKSEL. We choose one of 3 "modes" described in AN4759 based
332 // on sleep time. If in the overlap area, choose the lower (more precise) mode.
333 // These all assume a 1hz `ck_spre`.
334 let lfe_freq = match self.config.clock_source {
335 RtcClockSource::Lse => 32_768.,
336 RtcClockSource::Lsi => 40_000.,
337 RtcClockSource::Hse => 250_000., // Assuming 8Mhz HSE, which may not be the case
338 };
339
340 // sleep_time = (1/lfe_freq) * div * (wutr + 1)
341 // res = 1/lfe_freq * div
342 // sleep_time = res * WUTR = 1/lfe_freq * div * (wutr + 1)
343 // wutr = sleep_time * lfe_freq / div - 1
344
345 let clock_cfg;
346 let wutr;
347
348 if sleep_time >= 0.00012207 && sleep_time < 32. {
349 let division;
350 let div;
351 if sleep_time < 4. {
352 division = WakeupDivision::Two; // Resolution: 61.035µs
353 div = 2.;
354 } else if sleep_time < 8. {
355 division = WakeupDivision::Four; // Resolution: 122.08µs
356 div = 4.;
357 } else if sleep_time < 16. {
358 division = WakeupDivision::Eight; // Resolution: 244.141
359 div = 8.;
360 } else {
361 division = WakeupDivision::Sixteen; // Resolution: 488.281
362 div = 16.;
363 }
364 clock_cfg = ClockConfig::One(division);
365 wutr = sleep_time * lfe_freq / div - 1.
366 } else if sleep_time < 65_536. {
367 // 32s to 18 hours (This mode goes 1s to 18 hours; we use Config1 for the overlap)
368 clock_cfg = ClockConfig::Two;
369 wutr = sleep_time; // This works out conveniently!
370 } else if sleep_time < 131_072. {
371 // 18 to 36 hours
372 clock_cfg = ClockConfig::Three;
373 wutr = sleep_time - 65_537.;
374 } else {
375 panic!("Wakeup period must be between 0122.07µs and 36 hours.")
376 }
377
378 #[cfg(not(feature = "c0"))]
379 self.regs
380 .wutr()
381 .modify(|_, w| unsafe { w.wut().bits(wutr as u16) });
382
383 // Select the desired clock source. Program WUCKSEL[2:0] bits in RTC_CR register.
384 // See ref man Section 2.4.2: Maximum and minimum RTC wakeup period.
385 // todo: Check register docs and see what to set here.
386
387 // See AN4759, Table 13. RM, 27.3.6
388
389 // When ck_spre frequency is 1Hz, this allows to achieve a wakeup time from 1 s to
390 // around 36 hours with one-second resolution. This large programmable time range is
391 // divided in 2 parts:
392 // – from 1s to 18 hours when WUCKSEL [2:1] = 10
393 // – and from around 18h to 36h when WUCKSEL[2:1] = 11. In this last case 216 is
394 // added to the 16-bit counter current value.When the initialization sequence is
395 // complete (see Programming the wakeup timer on page 781), the timer starts
396 // counting down.When the wakeup function is enabled, the down-counting remains
397 // active in low-power modes. In addition, when it reaches 0, the WUTF flag is set in
398 // the RTC_ISR register, and the wakeup counter is automatically reloaded with its
399 // reload value (RTC_WUTR register value).
400 let word = match clock_cfg {
401 ClockConfig::One(division) => match division {
402 WakeupDivision::Sixteen => 0b000,
403 WakeupDivision::Eight => 0b001,
404 WakeupDivision::Four => 0b010,
405 WakeupDivision::Two => 0b011,
406 },
407 // for 2 and 3, what does `x` mean in the docs? Best guess is it doesn't matter.
408 ClockConfig::Two => 0b100, // eg 1s to 18h.
409 ClockConfig::Three => 0b110, // eg 18h to 36h
410 };
411
412 #[cfg(not(feature = "c0"))]
413 // 000: RTC/16 clock is selected
414 // 001: RTC/8 clock is selected
415 // 010: RTC/4 clock is selected
416 // 011: RTC/2 clock is selected
417 // 10x: ck_spre (usually 1 Hz) clock is selected
418 // 11x: ck_spre (usually 1 Hz) clock is selected and 216 is added to the WUT counter value
419 self.regs
420 .cr()
421 .modify(|_, w| unsafe { w.wucksel().bits(word) });
422 }
423
424 #[cfg(not(any(feature = "f373", feature = "c0")))]
425 /// Setup periodic auto-wakeup interrupts. See ST AN4759, Table 11, and more broadly,
426 /// section 2.4.1. See also reference manual, section 27.5.
427 /// In addition to running this function, set up the interrupt handling function by
428 /// adding the line `make_rtc_interrupt_handler!(RTC_WKUP);` somewhere in the body
429 /// of your program.
430 /// `sleep_time` is in ms.
431 pub fn set_wakeup(&mut self, sleep_time: f32) -> Result<()> {
432 // Configure and enable the EXTI line corresponding to the Wakeup timer even in
433 // interrupt mode and select the rising edge sensitivity.
434 // Sleep time is in seconds. See L4 RM, Table 47 to see that exti line 20 is the RTC wakeup
435 // timer. This appears to be the case for all families.
436
437 // L4 RM, 5.3.11: To wakeup from Stop mode with an RTC wakeup event, it is necessary to:
438 // • Configure the EXTI Line 20 to be sensitive to rising edge
439 // • Configure the RTC to generate the RTC alarm
440
441 let exti = unsafe { &(*EXTI::ptr()) };
442
443 cfg_if! {
444 if #[cfg(any(feature = "f3", feature = "l4"))] {
445 exti.imr1().modify(|_, w| w.mr20().unmasked());
446 exti.rtsr1().modify(|_, w| w.tr20().bit(true));
447 exti.ftsr1().modify(|_, w| w.tr20().clear_bit());
448 } else if #[cfg(feature = "f4")] {
449 exti.imr().modify(|_, w| w.mr20().unmasked());
450 exti.rtsr().modify(|_, w| w.tr20().bit(true));
451 exti.ftsr().modify(|_, w| w.tr20().clear_bit());
452 } else if #[cfg(feature = "g4")]{
453 exti.imr1().modify(|_, w| w.im20().unmasked());
454 exti.rtsr1().modify(|_, w| w.rt20().bit(true));
455 exti.ftsr1().modify(|_, w| w.ft20().clear_bit());
456 } else if #[cfg(any(feature = "l5", feature = "g0", feature = "wb", feature = "wl", feature = "h5"))] {
457 // exti.imr1().modify(|_, w| w.mr20().unmasked());
458 // exti.rtsr1().modify(|_, w| w.rt20().bit(true));
459 // exti.ftsr1().modify(|_, w| w.ft20().clear_bit());
460
461 } else if #[cfg(any(feature = "h747cm4", feature = "h747cm7"))] {
462 exti.c1imr1().modify(|_, w| w.mr20().unmasked());
463 exti.rtsr1().modify(|_, w| w.tr20().bit(true));
464 exti.ftsr1().modify(|_, w| w.tr20().clear_bit());
465 } else { // H7
466 exti.cpuimr1().modify(|_, w| w.mr20().unmasked());
467 exti.rtsr1().modify(|_, w| w.tr20().bit(true));
468 exti.ftsr1().modify(|_, w| w.tr20().clear_bit());
469 }
470 }
471
472 // We can't use the `edit_regs` abstraction here due to being unable to call a method
473 // in the closure.
474 self.regs.wpr().write(|w| unsafe { w.bits(0xCA) });
475 self.regs.wpr().write(|w| unsafe { w.bits(0x53) });
476
477 // Disable the wakeup timer. Clear WUTE bit in RTC_CR register
478 self.regs.cr().modify(|_, w| w.wute().clear_bit());
479
480 // Ensure access to Wakeup auto-reload counter and bits WUCKSEL[2:0] is allowed.
481 // Poll WUTWF until it is set in RTC_ISR (RTC2)/RTC_ICSR (RTC3) (May not be avail on F3)
482 cfg_if! {
483 if #[cfg(rtc_icsr)] {
484 bounded_loop!(self.regs.icsr().read().wutwf().bit_is_clear(), Error::RegisterUnchanged);
485 } else {
486 bounded_loop!(self.regs.isr().read().wutwf().bit_is_clear(), Error::RegisterUnchanged);
487 }
488 }
489
490 self.set_wakeup_interval_inner(sleep_time);
491 // Re-enable the wakeup timer. Set WUTE bit in RTC_CR register.
492 // The wakeup timer restarts counting down.
493 self.regs.cr().modify(|_, w| w.wute().bit(true));
494
495 // Enable the wakeup timer interrupt.
496 self.regs.cr().modify(|_, w| w.wutie().bit(true));
497
498 cfg_if! {
499 if #[cfg(rtc_icsr)] {
500 self.regs.scr().write(|w| w.cwutf().bit(true));
501 } else {
502 self.regs.isr().modify(|_, w| w.wutf().clear_bit());
503 }
504 }
505
506 self.regs.wpr().write(|w| unsafe { w.bits(0xFF) });
507
508 Ok(())
509 }
510
511 #[cfg(not(feature = "c0"))]
512 /// Enable the wakeup timer.
513 pub fn enable_wakeup(&mut self) {
514 unsafe {
515 self.regs.wpr().write(|w| w.bits(0xCA));
516 self.regs.wpr().write(|w| w.bits(0x53));
517 self.regs.cr().modify(|_, w| w.wute().bit(true));
518 self.regs.wpr().write(|w| w.bits(0xFF));
519 }
520 }
521
522 #[cfg(not(feature = "c0"))]
523 /// Disable the wakeup timer.
524 pub fn disable_wakeup(&mut self) {
525 unsafe {
526 self.regs.wpr().write(|w| w.bits(0xCA));
527 self.regs.wpr().write(|w| w.bits(0x53));
528 self.regs.cr().modify(|_, w| w.wute().clear_bit());
529 self.regs.wpr().write(|w| w.bits(0xFF));
530 }
531 }
532
533 #[cfg(not(feature = "c0"))]
534 /// Change the sleep time for the auto wakeup, after it's been set up.
535 /// Sleep time is in MS. Major DRY from `set_wakeup`.
536 pub fn set_wakeup_interval(&mut self, sleep_time: f32) -> Result<()> {
537 // `sleep_time` is in seconds.
538 // See comments in `set_auto_wakeup` for what these writes do.
539
540 // We can't use the `edit_regs` abstraction here due to being unable to call a method
541 // in the closure.
542 self.regs.wpr().write(|w| unsafe { w.bits(0xCA) });
543 self.regs.wpr().write(|w| unsafe { w.bits(0x53) });
544
545 let started_enabled = self.regs.cr().read().wute().bit_is_set();
546 if started_enabled {
547 self.regs.cr().modify(|_, w| w.wute().clear_bit());
548 }
549
550 cfg_if! {
551 if #[cfg(rtc_icsr)] {
552 bounded_loop!(self.regs.icsr().read().wutwf().bit_is_clear(), Error::RegisterUnchanged);
553 } else {
554 bounded_loop!(self.regs.isr().read().wutwf().bit_is_clear(), Error::RegisterUnchanged);
555 }
556 }
557
558 self.set_wakeup_interval_inner(sleep_time);
559
560 if started_enabled {
561 self.regs.cr().modify(|_, w| w.wute().bit(true));
562 }
563
564 self.regs.wpr().write(|w| unsafe { w.bits(0xFF) });
565
566 Ok(())
567 }
568
569 #[cfg(not(feature = "c0"))]
570 /// Clears the wakeup flag. Must be cleared manually after every RTC wakeup.
571 /// Alternatively, you could call this in the RTC wakeup interrupt handler.
572 pub fn clear_wakeup_flag(&mut self) -> Result<()> {
573 self.edit_regs(false, |regs| {
574 regs.cr().modify(|_, w| w.wute().clear_bit());
575
576 cfg_if! {
577 if #[cfg(any(feature = "l412", feature = "l5", feature = "g0", feature = "g4", feature = "l412",
578 feature = "wl", feature = "h5", feature = "c0"))] {
579 regs.scr().write(|w| w.cwutf().bit(true));
580 } else {
581 // Note that we clear this by writing 0, which isn't
582 // the standard convention, eg in other families, and
583 // other peripherals.
584 regs.isr().modify(|_, w| w.wutf().clear_bit());
585 }
586 }
587
588 regs.cr().modify(|_, w| w.wute().bit(true));
589 })
590 }
591
592 /// this function is used to disable write protection when modifying an RTC register.
593 /// It also optionally handles the additional step required to set a clock or calendar
594 /// value.
595 fn edit_regs<F>(&mut self, init_mode: bool, mut closure: F) -> Result<()>
596 where
597 F: FnMut(&mut RTC),
598 {
599 // Disable write protection
600 // This is safe, as we're only writin the correct and expected values.
601 self.regs.wpr().write(|w| unsafe { w.bits(0xCA) });
602 self.regs.wpr().write(|w| unsafe { w.bits(0x53) });
603
604 // todo: L4 has ICSR and ISR regs. Maybe both for backwards compat?
605
606 cfg_if! {
607 if #[cfg(rtc_icsr)] {
608 // Enter init mode if required. This is generally used to edit the clock or calendar,
609 // but not for initial enabling steps.
610 if init_mode && self.regs.icsr().read().initf().bit_is_clear() {
611 // are we already in init mode?
612 self.regs.icsr().modify(|_, w| w.init().bit(true));
613 // wait to return to init state
614 bounded_loop!(self.regs.icsr().read().initf().bit_is_clear(), Error::RegisterUnchanged);
615 }
616
617 // Edit the regs specified in the closure, now that they're writable.
618 closure(&mut self.regs);
619
620 if init_mode {
621 self.regs.icsr().modify(|_, w| w.init().clear_bit()); // Exits init mode
622 bounded_loop!(self.regs.icsr().read().initf().bit_is_set(), Error::RegisterUnchanged);
623 }
624 // } else if #[cfg(feature = "wl")] {
625 // if init_mode && self.regs.isr().read().initf().bit_is_clear() {
626 // self.regs.icsr().modify(|_, w| w.init().bit(true));
627 // while self.regs.icsr().read().initf().bit_is_clear() {} // wait to return to init state
628 // }
629
630 // closure(&mut self.regs);
631
632 // if init_mode {
633 // self.regs.icsr().modify(|_, w| w.init().clear_bit()); // Exits init mode
634 // while self.regs.sr().read().initf().bit_is_set() {}
635 // }
636 } else {
637 if init_mode && self.regs.isr().read().initf().bit_is_clear() {
638 self.regs.isr().modify(|_, w| w.init().bit(true));
639 // wait to return to init state
640 bounded_loop!(self.regs.isr().read().initf().bit_is_clear(), Error::RegisterUnchanged);
641 }
642
643 closure(&mut self.regs);
644
645 if init_mode {
646 self.regs.isr().modify(|_, w| w.init().clear_bit()); // Exits init mode
647 bounded_loop!(self.regs.isr().read().initf().bit_is_set(), Error::RegisterUnchanged);
648 }
649 }
650 }
651
652 // Re-enable write protection.
653 // This is safe, as the field accepts the full range of 8-bit values.
654 self.regs.wpr().write(|w| unsafe { w.bits(0xFF) });
655
656 Ok(())
657 }
658
659 /// set time using NaiveTime (ISO 8601 time without timezone)
660 /// Hour format is 24h
661 pub fn set_time(&mut self, time: &NaiveTime) -> Result<()> {
662 self.set_24h_fmt()?;
663 let (ht, hu) = bcd2_encode(time.hour())?;
664 let (mnt, mnu) = bcd2_encode(time.minute())?;
665 let (st, su) = bcd2_encode(time.second())?;
666
667 self.edit_regs(true, |regs| {
668 regs.tr().write(|w| unsafe {
669 w.ht().bits(ht);
670 w.hu().bits(hu);
671 w.mnt().bits(mnt);
672 w.mnu().bits(mnu);
673 w.st().bits(st);
674 w.su().bits(su);
675 w.pm().clear_bit()
676 });
677 })
678 }
679
680 /// Set the seconds component of the RTC's current time.
681 pub fn set_seconds(&mut self, seconds: u8) -> Result<()> {
682 if seconds > 59 {
683 return Err(Error::RtcError(RtcError::InvalidInputData));
684 }
685 let (st, su) = bcd2_encode(seconds as u32)?;
686 self.edit_regs(true, |regs| {
687 regs.tr()
688 .modify(|_, w| unsafe { w.st().bits(st).su().bits(su) });
689 })
690 }
691
692 /// Set the minutes component of the RTC's current time.
693 pub fn set_minutes(&mut self, minutes: u8) -> Result<()> {
694 if minutes > 59 {
695 return Err(Error::RtcError(RtcError::InvalidInputData));
696 }
697 let (mnt, mnu) = bcd2_encode(minutes as u32)?;
698 self.edit_regs(true, |regs| {
699 regs.tr()
700 .modify(|_, w| unsafe { w.mnt().bits(mnt).mnu().bits(mnu) });
701 })
702 }
703
704 /// Set the hours component of the RTC's current time.
705 pub fn set_hours(&mut self, hours: u8) -> Result<()> {
706 let (ht, hu) = bcd2_encode(hours as u32)?;
707
708 self.edit_regs(true, |regs| {
709 regs.tr()
710 .modify(|_, w| unsafe { w.ht().bits(ht).hu().bits(hu) });
711 })
712 }
713
714 /// Set the weekday component of the RTC's current date.
715 pub fn set_weekday(&mut self, weekday: u8) -> Result<()> {
716 if !(1..=7).contains(&weekday) {
717 return Err(Error::RtcError(RtcError::InvalidInputData));
718 }
719 self.edit_regs(true, |regs| {
720 regs.dr().modify(|_, w| unsafe { w.wdu().bits(weekday) });
721 })
722 }
723
724 /// Set the day component of the RTC's current date.
725 pub fn set_day(&mut self, day: u8) -> Result<()> {
726 if !(1..=31).contains(&day) {
727 return Err(Error::RtcError(RtcError::InvalidInputData));
728 }
729 let (dt, du) = bcd2_encode(day as u32)?;
730 self.edit_regs(true, |regs| {
731 regs.dr()
732 .modify(unsafe { |_, w| w.dt().bits(dt).du().bits(du) });
733 })
734 }
735
736 /// Set the month component of the RTC's current date.
737 pub fn set_month(&mut self, month: u8) -> Result<()> {
738 if !(1..=12).contains(&month) {
739 return Err(Error::RtcError(RtcError::InvalidInputData));
740 }
741 let (mt, mu) = bcd2_encode(month as u32)?;
742 self.edit_regs(true, |regs| {
743 regs.dr()
744 .modify(|_, w| unsafe { w.mt().bit(mt > 0).mu().bits(mu) });
745 })
746 }
747
748 /// Set the year component of the RTC's current date.
749 pub fn set_year(&mut self, year: u16) -> Result<()> {
750 if !(1970..=2038).contains(&year) {
751 // todo: Is this right?
752 return Err(Error::RtcError(RtcError::InvalidInputData));
753 }
754 let (yt, yu) = bcd2_encode(year as u32 - 2_000)?;
755 // todo RTC is 2000 based ? Not sure best way to handle this.
756 self.edit_regs(true, |regs| {
757 regs.dr()
758 .modify(|_, w| unsafe { w.yt().bits(yt).yu().bits(yu) });
759 })
760 }
761
762 /// Set the date using NaiveDate (ISO 8601 calendar date without timezone).
763 /// WeekDay is set using the `set_weekday` method
764 pub fn set_date(&mut self, date: &NaiveDate) -> Result<()> {
765 if date.year() < 1970 {
766 // todo: Is this right?
767 return Err(Error::RtcError(RtcError::InvalidInputData));
768 }
769
770 let (yt, yu) = bcd2_encode((date.year() - 2_000) as u32)?;
771 let (mt, mu) = bcd2_encode(date.month())?;
772 let (dt, du) = bcd2_encode(date.day())?;
773
774 self.edit_regs(true, |regs| {
775 regs.dr().write(|w| unsafe {
776 w.dt().bits(dt);
777 w.du().bits(du);
778 w.mt().bit(mt > 0);
779 w.mu().bits(mu);
780 w.yt().bits(yt);
781 w.yu().bits(yu)
782 });
783 })
784 }
785
786 /// Set the current datetime.
787 pub fn set_datetime(&mut self, date: &NaiveDateTime) -> Result<()> {
788 if date.year() < 1970 {
789 // todo is this right?
790 return Err(Error::RtcError(RtcError::InvalidInputData));
791 }
792
793 self.set_24h_fmt()?;
794 let (yt, yu) = bcd2_encode((date.year() - 2_000) as u32)?;
795 let (mt, mu) = bcd2_encode(date.month())?;
796 let (dt, du) = bcd2_encode(date.day())?;
797
798 let (ht, hu) = bcd2_encode(date.hour())?;
799 let (mnt, mnu) = bcd2_encode(date.minute())?;
800 let (st, su) = bcd2_encode(date.second())?;
801
802 self.edit_regs(true, |regs| {
803 regs.dr().write(|w| unsafe {
804 w.dt().bits(dt);
805 w.du().bits(du);
806 w.mt().bit(mt > 0);
807 w.mu().bits(mu);
808 w.yt().bits(yt);
809 w.yu().bits(yu)
810 });
811 })?;
812
813 self.edit_regs(true, |regs| {
814 regs.tr().write(|w| unsafe {
815 w.ht().bits(ht);
816 w.hu().bits(hu);
817 w.mnt().bits(mnt);
818 w.mnu().bits(mnu);
819 w.st().bits(st);
820 w.su().bits(su);
821 w.pm().clear_bit()
822 });
823 })?;
824
825 Ok(())
826 }
827
828 /// Get the seconds component of the current time.
829 pub fn get_seconds(&mut self) -> u8 {
830 let tr = self.regs.tr().read();
831 bcd2_decode(tr.st().bits(), tr.su().bits()) as u8
832 }
833
834 /// Get the minutes component of the current time.
835 pub fn get_minutes(&mut self) -> u8 {
836 let tr = self.regs.tr().read();
837 bcd2_decode(tr.mnt().bits(), tr.mnu().bits()) as u8
838 }
839
840 /// Get the hours component of the current time.
841 pub fn get_hours(&mut self) -> u8 {
842 let tr = self.regs.tr().read();
843 bcd2_decode(tr.ht().bits(), tr.hu().bits()) as u8
844 }
845
846 /// Get the current time.
847 pub fn get_time(&mut self) -> NaiveTime {
848 NaiveTime::from_hms_opt(
849 self.get_hours().into(),
850 self.get_minutes().into(),
851 self.get_seconds().into(),
852 )
853 .unwrap()
854 }
855
856 /// Get the weekday component of the current date.
857 pub fn get_weekday(&mut self) -> u8 {
858 let dr = self.regs.dr().read();
859 bcd2_decode(dr.wdu().bits(), 0x00) as u8
860 }
861
862 /// Get the day component of the current date.
863 pub fn get_day(&mut self) -> u8 {
864 let dr = self.regs.dr().read();
865 bcd2_decode(dr.dt().bits(), dr.du().bits()) as u8
866 }
867
868 /// Get the month component of the current date.
869 pub fn get_month(&mut self) -> u8 {
870 let dr = self.regs.dr().read();
871 let mt: u8 = if dr.mt().bit() { 1 } else { 0 };
872 bcd2_decode(mt, dr.mu().bits()) as u8
873 }
874
875 /// Get the year component of the current date.
876 pub fn get_year(&mut self) -> u16 {
877 let dr = self.regs.dr().read();
878 (bcd2_decode(dr.yt().bits(), dr.yu().bits()) + 2000) as u16
879 }
880
881 /// Get the current date.
882 pub fn get_date(&mut self) -> NaiveDate {
883 NaiveDate::from_ymd_opt(
884 self.get_year().into(),
885 self.get_month().into(),
886 self.get_day().into(),
887 )
888 .unwrap()
889 }
890
891 /// Get the current datetime.
892 pub fn get_datetime(&mut self) -> NaiveDateTime {
893 NaiveDate::from_ymd_opt(
894 self.get_year().into(),
895 self.get_month().into(),
896 self.get_day().into(),
897 )
898 .unwrap()
899 .and_hms_opt(
900 self.get_hours().into(),
901 self.get_minutes().into(),
902 self.get_seconds().into(),
903 )
904 .unwrap()
905 }
906}
907
908// Two 32-bit registers (RTC_TR and RTC_DR) contain the seconds, minutes, hours (12- or 24-hour format), day (day
909// of week), date (day of month), month, and year, expressed in binary coded decimal format
910// (BCD). The sub-seconds value is also available in binary format.
911//
912// The following helper functions encode into BCD format from integer and
913// decode to an integer from a BCD value respectively.
914fn bcd2_encode(word: u32) -> Result<(u8, u8)> {
915 let l = match (word / 10).try_into() {
916 Ok(v) => v,
917 Err(_) => {
918 return Err(Error::RtcError(RtcError::InvalidInputData));
919 }
920 };
921 let r = match (word % 10).try_into() {
922 Ok(v) => v,
923 Err(_) => {
924 return Err(Error::RtcError(RtcError::InvalidInputData));
925 }
926 };
927
928 Ok((l, r))
929}
930
931fn bcd2_decode(fst: u8, snd: u8) -> u32 {
932 (fst * 10 + snd).into()
933}