stm32_hal2/rtc.rs
1//! Support for the Real Time Clock (RTC) peripheral.
2//! For more details, see
3//! [ST AN4759](https:/www.st.com%2Fresource%2Fen%2Fapplication_note%2Fdm00226326-using-the-hardware-realtime-clock-rtc-and-the-tamper-management-unit-tamp-with-stm32-microcontrollers-stmicroelectronics.pdf&usg=AOvVaw3PzvL2TfYtwS32fw-Uv37h)
4
5//! Uses [Chrono](https://docs.rs/chrono) for dates and times.
6
7use core::convert::TryInto;
8
9use cfg_if::cfg_if;
10use chrono::{Datelike, NaiveDate, NaiveDateTime, NaiveTime, Timelike};
11
12use crate::pac::{EXTI, PWR, RCC, RTC};
13
14// todo: QC use of ICSR vice SR and ISR wherever used in this module!
15
16/// RTC Clock source.
17#[derive(Clone, Copy, Debug, PartialEq)]
18#[repr(u8)]
19pub enum RtcClockSource {
20 /// 01: LSE oscillator clock used as RTC clock
21 Lse = 0b01,
22 /// 10: LSI oscillator clock used as RTC clock
23 Lsi = 0b10,
24 /// 11: HSE oscillator clock divided by 32 used as RTC clock
25 Hse = 0b11,
26}
27
28/// RTC error type
29#[derive(Debug, defmt::Format)]
30pub enum Error {
31 /// Invalid input error
32 InvalidInputData,
33}
34
35/// See ref man, section 27.6.3, or AN4769, section 2.4.2.
36/// To be used with WakeupPrescaler
37#[derive(Clone, Copy, Debug)]
38enum WakeupDivision {
39 Sixteen,
40 Eight,
41 Four,
42 Two,
43}
44
45/// See AN4759, table 13.
46#[derive(Clone, Copy, Debug)]
47enum ClockConfig {
48 One(WakeupDivision),
49 Two,
50 Three,
51}
52
53/// Interrupt event
54pub enum Event {
55 WakeupTimer,
56 AlarmA,
57 AlarmB,
58 Timestamp,
59}
60
61pub enum Alarm {
62 AlarmA,
63 AlarmB,
64}
65
66impl From<Alarm> for Event {
67 fn from(a: Alarm) -> Self {
68 match a {
69 Alarm::AlarmA => Event::AlarmA,
70 Alarm::AlarmB => Event::AlarmB,
71 }
72 }
73}
74
75/// Represents a Real Time Clock (RTC) peripheral.
76pub struct Rtc {
77 /// RTC Peripheral register definition
78 regs: RTC,
79 config: RtcConfig,
80}
81
82#[derive(Copy, Clone, Debug, PartialEq)]
83/// Configuration data for the RTC.
84pub struct RtcConfig {
85 /// RTC clock source. Defaults to LSI (Low speed internal oscillator)
86 pub clock_source: RtcClockSource,
87 /// Asynchronous prescaler factor
88 /// This is the asynchronous division factor:
89 /// ck_apre frequency = RTCCLK frequency/(PREDIV_A+1)
90 /// ck_apre drives the subsecond register. Defaults to 127.
91 pub async_prescaler: u8,
92 /// Synchronous prescaler factor
93 /// This is the synchronous division factor:
94 /// ck_spre frequency = ck_apre frequency/(PREDIV_S+1)
95 /// ck_spre must be 1Hz. Defaults to 255.
96 pub sync_prescaler: u16,
97 /// Bypass LSE output - eg if you're using a self-powered external oscillator. This
98 /// saves power, and lets you use the LSE output pin as a GPIO.
99 pub bypass_lse_output: bool,
100}
101
102impl Default for RtcConfig {
103 /// LSI with prescalers assuming 32.768 kHz.
104 /// Raw sub-seconds in 1/256.
105 fn default() -> Self {
106 RtcConfig {
107 clock_source: RtcClockSource::Lsi,
108 async_prescaler: 127,
109 sync_prescaler: 255,
110 bypass_lse_output: false,
111 }
112 }
113}
114
115impl Rtc {
116 /// Initialize the RTC, including configuration register writes.
117 pub fn new(regs: RTC, config: RtcConfig) -> Self {
118 let mut result = Self { regs, config };
119
120 // Enable the peripheral clock for communication
121 // You must enable the `pwren()` bit before making RTC register writes, or they won't stay
122 // set. Enable the backup interface by setting PWREN
123
124 // Note that unlock other RCC enableing processes, there's no corresponding reset
125 // field here.
126
127 // See L4 RM, `Backup domain access` section.
128 let rcc = unsafe { &(*RCC::ptr()) };
129 let pwr = unsafe { &(*PWR::ptr()) };
130
131 cfg_if! {
132 if #[cfg(any(feature = "f3", feature = "f4"))] {
133 rcc.apb1enr.modify(|_, w| w.pwren().set_bit());
134 pwr.cr.read(); // read to allow the pwr clock to enable
135 pwr.cr.modify(|_, w| w.dbp().set_bit());
136 while pwr.cr.read().dbp().bit_is_clear() {}
137 } else if #[cfg(any(feature = "l4", feature = "l5", feature = "g4", feature = "l412", feature = "wb", feature = "wl"))] {
138 // 1. Enable the power interface clock by setting the PWREN bits in the Section 6.4.18:
139 // APB1 peripheral clock enable register 1 (RCC_APB1ENR1)
140 #[cfg(not(any(feature = "wb", feature = "wl")))]
141 rcc.apb1enr1.modify(|_, w| {
142 w.pwren().set_bit();
143 w.rtcapben().set_bit()
144 });
145 #[cfg(any(feature = "wb", feature = "wl"))]
146 rcc.apb1enr1.modify(|_, w| w.rtcapben().set_bit());
147
148 rcc.apb1smenr1.modify(|_, w| w.rtcapbsmen().set_bit()); // In sleep and stop modes.
149 pwr.cr1.read(); // Read to allow the pwr clock to enable
150 // 2. Set the DBP bit in the Power control register 1 (PWR_CR1) to enable access to the
151 // backup domain
152 pwr.cr1.modify( | _, w| w.dbp().set_bit()); // Unlock the backup domain
153 while pwr.cr1.read().dbp().bit_is_clear() {}
154 } else if #[cfg(any(feature = "g0"))] {
155 rcc.apbenr1.modify(|_, w| {
156 w.pwren().set_bit();
157 w.rtcapben().set_bit()
158 });
159 rcc.apbsmenr1.modify(|_, w| w.rtcapbsmen().set_bit()); // In sleep and stop modes.
160 pwr.cr1.read();
161 pwr.cr1.modify( | _, w| w.dbp().set_bit());
162 while pwr.cr1.read().dbp().bit_is_clear() {}
163 } else if #[cfg(feature = "h5")] {
164 rcc.apb3enr.modify(|_, w| w.rtcapben().set_bit());
165 rcc.apb3lpenr.modify(|_, w| w.rtcapblpen().set_bit()); // In sleep and stop modes.
166 pwr.dbpcr.read(); // read to allow the pwr clock to enable // todo??
167 pwr.dbpcr.modify( | _, w| w.dbp().set_bit());
168 while pwr.dbpcr.read().dbp().bit_is_clear() {}
169 } else { // eg h7
170 rcc.apb4enr.modify(|_, w| w.rtcapben().set_bit());
171 rcc.apb4lpenr.modify(|_, w| w.rtcapblpen().set_bit()); // In sleep and stop modes.
172 pwr.cr1.read(); // read to allow the pwr clock to enable
173 pwr.cr1.modify( | _, w| w.dbp().set_bit());
174 while pwr.cr1.read().dbp().bit_is_clear() {}
175 }
176 }
177
178 // Set up the LSI or LSE as required.
179 match config.clock_source {
180 RtcClockSource::Lsi => {
181 cfg_if! {
182 if #[cfg(feature = "wb")] {
183 // todo: LSI2?
184 rcc.csr.modify(|_, w| w.lsi1on().set_bit());
185 while rcc.csr.read().lsi1rdy().bit_is_clear() {}
186 } else if #[cfg(feature = "h5")] {
187 rcc.bdcr.modify(|_, w| w.lsion().set_bit());
188 while rcc.bdcr.read().lsirdy().bit_is_clear() {}
189 } else {
190 rcc.csr.modify(|_, w| w.lsion().set_bit());
191 while rcc.csr.read().lsirdy().bit_is_clear() {}
192 }
193 }
194 }
195 RtcClockSource::Lse => {
196 // Can only set lsebyp when lse is off, so do this as a separate step.
197 rcc.bdcr
198 .modify(|_, w| w.lsebyp().bit(config.bypass_lse_output));
199 rcc.bdcr.modify(|_, w| w.lseon().set_bit());
200 while rcc.bdcr.read().lserdy().bit_is_clear() {}
201 }
202 _ => (),
203 }
204
205 rcc.bdcr.modify(|_, w| {
206 // 3. Select the RTC clock source in the Backup domain control register (RCC_BDCR).
207 unsafe { w.rtcsel().bits(result.config.clock_source as u8) };
208 // 4. Enable the RTC clock by setting the RTCEN [15] bit in the Backup domain control
209 // register (RCC_BDCR)
210 w.rtcen().set_bit()
211 });
212
213 result.edit_regs(false, |regs| {
214 regs.cr.modify(
215 |_, w| {
216 unsafe {
217 w.fmt()
218 .clear_bit() // 24hr
219 .osel()
220 /*
221 00: Output disabled
222 01: Alarm A output enabled
223 10: Alarm B output enabled
224 11: Wakeup output enabled
225 */
226 .bits(0b00)
227 .pol()
228 .clear_bit()
229 }
230 }, // pol high
231 );
232
233 regs.prer.modify(|_, w| unsafe {
234 w.prediv_s().bits(config.sync_prescaler);
235 w.prediv_a().bits(config.async_prescaler)
236 });
237 });
238
239 result
240 }
241
242 /// Sets calendar clock to 24 hr format
243 pub fn set_24h_fmt(&mut self) {
244 self.edit_regs(true, |regs| regs.cr.modify(|_, w| w.fmt().clear_bit()));
245 }
246
247 /// Sets calendar clock to 12 hr format
248 pub fn set_12h_fmt(&mut self) {
249 self.edit_regs(true, |regs| regs.cr.modify(|_, w| w.fmt().set_bit()));
250 }
251
252 /// Reads current hour format selection
253 pub fn is_24h_fmt(&self) -> bool {
254 !self.regs.cr.read().fmt().bit()
255 }
256
257 // /// Setup the alarm. See AN4759, section 2.3.1.
258 // /// `sleep_time` is in ms. `Table 8` desribes these steps.
259 // pub fn set_alarm(&mut self, exti: &mut EXTI) {
260 // note: STM3241x and 42x have diff addresses, and are PAC incompatible!
261 // exti.imr1.modify(|_, w| w.mr18().unmasked());
262 // exti.rtsr1.modify(|_, w| w.tr18().set_bit());
263 // exti.ftsr1.modify(|_, w| w.tr18().clear_bit());
264 //
265 // self.edit_regs(false, |regs| {
266 // regs.cr.modify(|_, w| w.alrae().clear_bit());
267 //
268 // while regs.cr.read().alrae().bit_is_set() {}
269 //
270 // // todo: Set the alarm time. This function will be broken until this is accomplished.
271 // // self.regs.alrmar.modify(|_, w| unsafe {});
272 //
273 // regs.cr.modify(|_, w| w.alrae().set_bit());
274 // while regs.cr.read().alrae().bit_is_clear() {}
275 // })
276 // }
277
278 /// Helper fn, to do the important bits of setting the interval, with
279 /// the registers already unlocked.
280 fn set_wakeup_interval_inner(&mut self, sleep_time: f32) {
281 // Program the value into the wakeup timer
282 // Set WUT[15:0] in RTC_WUTR register. For RTC3 the user must also program
283 // WUTOCLR bits.
284 // See ref man Section 2.4.2: Maximum and minimum RTC wakeup period.
285 // todo check ref man register table
286
287 // See notes reffed below about WUCKSEL. We choose one of 3 "modes" described in AN4759 based
288 // on sleep time. If in the overlap area, choose the lower (more precise) mode.
289 // These all assume a 1hz `ck_spre`.
290 let lfe_freq = match self.config.clock_source {
291 RtcClockSource::Lse => 32_768.,
292 RtcClockSource::Lsi => 40_000.,
293 RtcClockSource::Hse => 250_000., // Assuming 8Mhz HSE, which may not be the case
294 };
295
296 // sleep_time = (1/lfe_freq) * div * (wutr + 1)
297 // res = 1/lfe_freq * div
298 // sleep_time = res * WUTR = 1/lfe_freq * div * (wutr + 1)
299 // wutr = sleep_time * lfe_freq / div - 1
300
301 let clock_cfg;
302 let wutr;
303
304 if sleep_time >= 0.00012207 && sleep_time < 32. {
305 let division;
306 let div;
307 if sleep_time < 4. {
308 division = WakeupDivision::Two; // Resolution: 61.035µs
309 div = 2.;
310 } else if sleep_time < 8. {
311 division = WakeupDivision::Four; // Resolution: 122.08µs
312 div = 4.;
313 } else if sleep_time < 16. {
314 division = WakeupDivision::Eight; // Resolution: 244.141
315 div = 8.;
316 } else {
317 division = WakeupDivision::Sixteen; // Resolution: 488.281
318 div = 16.;
319 }
320 clock_cfg = ClockConfig::One(division);
321 wutr = sleep_time * lfe_freq / div - 1.
322 } else if sleep_time < 65_536. {
323 // 32s to 18 hours (This mode goes 1s to 18 hours; we use Config1 for the overlap)
324 clock_cfg = ClockConfig::Two;
325 wutr = sleep_time; // This works out conveniently!
326 } else if sleep_time < 131_072. {
327 // 18 to 36 hours
328 clock_cfg = ClockConfig::Three;
329 wutr = sleep_time - 65_537.;
330 } else {
331 panic!("Wakeup period must be between 0122.07µs and 36 hours.")
332 }
333
334 self.regs
335 .wutr
336 .modify(|_, w| unsafe { w.wut().bits(wutr as u16) });
337
338 // Select the desired clock source. Program WUCKSEL[2:0] bits in RTC_CR register.
339 // See ref man Section 2.4.2: Maximum and minimum RTC wakeup period.
340 // todo: Check register docs and see what to set here.
341
342 // See AN4759, Table 13. RM, 27.3.6
343
344 // When ck_spre frequency is 1Hz, this allows to achieve a wakeup time from 1 s to
345 // around 36 hours with one-second resolution. This large programmable time range is
346 // divided in 2 parts:
347 // – from 1s to 18 hours when WUCKSEL [2:1] = 10
348 // – and from around 18h to 36h when WUCKSEL[2:1] = 11. In this last case 216 is
349 // added to the 16-bit counter current value.When the initialization sequence is
350 // complete (see Programming the wakeup timer on page 781), the timer starts
351 // counting down.When the wakeup function is enabled, the down-counting remains
352 // active in low-power modes. In addition, when it reaches 0, the WUTF flag is set in
353 // the RTC_ISR register, and the wakeup counter is automatically reloaded with its
354 // reload value (RTC_WUTR register value).
355 let word = match clock_cfg {
356 ClockConfig::One(division) => match division {
357 WakeupDivision::Sixteen => 0b000,
358 WakeupDivision::Eight => 0b001,
359 WakeupDivision::Four => 0b010,
360 WakeupDivision::Two => 0b011,
361 },
362 // for 2 and 3, what does `x` mean in the docs? Best guess is it doesn't matter.
363 ClockConfig::Two => 0b100, // eg 1s to 18h.
364 ClockConfig::Three => 0b110, // eg 18h to 36h
365 };
366
367 // 000: RTC/16 clock is selected
368 // 001: RTC/8 clock is selected
369 // 010: RTC/4 clock is selected
370 // 011: RTC/2 clock is selected
371 // 10x: ck_spre (usually 1 Hz) clock is selected
372 // 11x: ck_spre (usually 1 Hz) clock is selected and 216 is added to the WUT counter value
373 self.regs
374 .cr
375 .modify(|_, w| unsafe { w.wucksel().bits(word) });
376 }
377
378 #[cfg(not(feature = "f373"))]
379 /// Setup periodic auto-wakeup interrupts. See ST AN4759, Table 11, and more broadly,
380 /// section 2.4.1. See also reference manual, section 27.5.
381 /// In addition to running this function, set up the interrupt handling function by
382 /// adding the line `make_rtc_interrupt_handler!(RTC_WKUP);` somewhere in the body
383 /// of your program.
384 /// `sleep_time` is in ms.
385 pub fn set_wakeup(&mut self, sleep_time: f32) {
386 // Configure and enable the EXTI line corresponding to the Wakeup timer even in
387 // interrupt mode and select the rising edge sensitivity.
388 // Sleep time is in seconds. See L4 RM, Table 47 to see that exti line 20 is the RTC wakeup
389 // timer. This appears to be the case for all families.
390
391 // L4 RM, 5.3.11: To wakeup from Stop mode with an RTC wakeup event, it is necessary to:
392 // • Configure the EXTI Line 20 to be sensitive to rising edge
393 // • Configure the RTC to generate the RTC alarm
394
395 let exti = unsafe { &(*EXTI::ptr()) };
396
397 cfg_if! {
398 if #[cfg(any(feature = "f3", feature = "l4"))] {
399 exti.imr1.modify(|_, w| w.mr20().unmasked());
400 exti.rtsr1.modify(|_, w| w.tr20().set_bit());
401 exti.ftsr1.modify(|_, w| w.tr20().clear_bit());
402 } else if #[cfg(feature = "f4")] {
403 exti.imr.modify(|_, w| w.mr20().unmasked());
404 exti.rtsr.modify(|_, w| w.tr20().set_bit());
405 exti.ftsr.modify(|_, w| w.tr20().clear_bit());
406 } else if #[cfg(feature = "g4")]{
407 exti.imr1.modify(|_, w| w.im20().unmasked());
408 exti.rtsr1.modify(|_, w| w.rt20().set_bit());
409 exti.ftsr1.modify(|_, w| w.ft20().clear_bit());
410 } else if #[cfg(any(feature = "l5", feature = "g0", feature = "wb", feature = "wl", feature = "h5"))] {
411 // exti.imr1.modify(|_, w| w.mr20().unmasked());
412 // exti.rtsr1.modify(|_, w| w.rt20().set_bit());
413 // exti.ftsr1.modify(|_, w| w.ft20().clear_bit());
414
415 } else if #[cfg(any(feature = "h747cm4", feature = "h747cm7"))] {
416 exti.c1imr1.modify(|_, w| w.mr20().unmasked());
417 exti.rtsr1.modify(|_, w| w.tr20().set_bit());
418 exti.ftsr1.modify(|_, w| w.tr20().clear_bit());
419 } else { // H7
420 exti.cpuimr1.modify(|_, w| w.mr20().unmasked());
421 exti.rtsr1.modify(|_, w| w.tr20().set_bit());
422 exti.ftsr1.modify(|_, w| w.tr20().clear_bit());
423 }
424 }
425
426 // We can't use the `edit_regs` abstraction here due to being unable to call a method
427 // in the closure.
428 self.regs.wpr.write(|w| unsafe { w.bits(0xCA) });
429 self.regs.wpr.write(|w| unsafe { w.bits(0x53) });
430
431 // Disable the wakeup timer. Clear WUTE bit in RTC_CR register
432 self.regs.cr.modify(|_, w| w.wute().clear_bit());
433
434 // Ensure access to Wakeup auto-reload counter and bits WUCKSEL[2:0] is allowed.
435 // Poll WUTWF until it is set in RTC_ISR (RTC2)/RTC_ICSR (RTC3) (May not be avail on F3)
436 cfg_if! {
437 if #[cfg(any(feature = "l5", feature = "g0", feature = "g4", feature = "l412", feature = "wl", feature = "h5"))] {
438 while self.regs.icsr.read().wutwf().bit_is_clear() {}
439 } else {
440 while self.regs.isr.read().wutwf().bit_is_clear() {}
441 }
442 }
443
444 self.set_wakeup_interval_inner(sleep_time);
445 // Re-enable the wakeup timer. Set WUTE bit in RTC_CR register.
446 // The wakeup timer restarts counting down.
447 self.regs.cr.modify(|_, w| w.wute().set_bit());
448
449 // Enable the wakeup timer interrupt.
450 self.regs.cr.modify(|_, w| w.wutie().set_bit());
451
452 cfg_if! {
453 if #[cfg(any(feature = "l412", feature = "l5", feature = "g0", feature = "g4", feature = "l412", feature = "wl", feature = "h5"))] {
454 self.regs.scr.write(|w| w.cwutf().set_bit());
455 } else {
456 self.regs.isr.modify(|_, w| w.wutf().clear_bit());
457 }
458 }
459
460 self.regs.wpr.write(|w| unsafe { w.bits(0xFF) });
461 }
462
463 /// Enable the wakeup timer.
464 pub fn enable_wakeup(&mut self) {
465 unsafe {
466 self.regs.wpr.write(|w| w.bits(0xCA));
467 self.regs.wpr.write(|w| w.bits(0x53));
468 self.regs.cr.modify(|_, w| w.wute().set_bit());
469 self.regs.wpr.write(|w| w.bits(0xFF));
470 }
471 }
472
473 /// Disable the wakeup timer.
474 pub fn disable_wakeup(&mut self) {
475 unsafe {
476 self.regs.wpr.write(|w| w.bits(0xCA));
477 self.regs.wpr.write(|w| w.bits(0x53));
478 self.regs.cr.modify(|_, w| w.wute().clear_bit());
479 self.regs.wpr.write(|w| w.bits(0xFF));
480 }
481 }
482
483 /// Change the sleep time for the auto wakeup, after it's been set up.
484 /// Sleep time is in MS. Major DRY from `set_wakeup`.
485 pub fn set_wakeup_interval(&mut self, sleep_time: f32) {
486 // `sleep_time` is in seconds.
487 // See comments in `set_auto_wakeup` for what these writes do.
488
489 // We can't use the `edit_regs` abstraction here due to being unable to call a method
490 // in the closure.
491 self.regs.wpr.write(|w| unsafe { w.bits(0xCA) });
492 self.regs.wpr.write(|w| unsafe { w.bits(0x53) });
493
494 let started_enabled = self.regs.cr.read().wute().bit_is_set();
495 if started_enabled {
496 self.regs.cr.modify(|_, w| w.wute().clear_bit());
497 }
498
499 cfg_if! {
500 if #[cfg(any(feature = "l5", feature = "g0", feature = "g4", feature = "l412", feature = "wl", feature = "h5"))] {
501 while self.regs.icsr.read().wutwf().bit_is_clear() {}
502 } else {
503 while self.regs.isr.read().wutwf().bit_is_clear() {}
504 }
505 }
506
507 self.set_wakeup_interval_inner(sleep_time);
508
509 if started_enabled {
510 self.regs.cr.modify(|_, w| w.wute().set_bit());
511 }
512
513 self.regs.wpr.write(|w| unsafe { w.bits(0xFF) });
514 }
515
516 /// Clears the wakeup flag. Must be cleared manually after every RTC wakeup.
517 /// Alternatively, you could call this in the RTC wakeup interrupt handler.
518 pub fn clear_wakeup_flag(&mut self) {
519 self.edit_regs(false, |regs| {
520 regs.cr.modify(|_, w| w.wute().clear_bit());
521
522 cfg_if! {
523 if #[cfg(any(feature = "l412", feature = "l5", feature = "g0", feature = "g4", feature = "l412", feature = "wl", feature = "h5"))] {
524 regs.scr.write(|w| w.cwutf().set_bit());
525 } else {
526 // Note that we clear this by writing 0, which isn't
527 // the standard convention, eg in other families, and
528 // other peripherals.
529 regs.isr.modify(|_, w| w.wutf().clear_bit());
530 }
531 }
532
533 regs.cr.modify(|_, w| w.wute().set_bit());
534 });
535 }
536
537 /// this function is used to disable write protection when modifying an RTC register.
538 /// It also optionally handles the additional step required to set a clock or calendar
539 /// value.
540 fn edit_regs<F>(&mut self, init_mode: bool, mut closure: F)
541 where
542 F: FnMut(&mut RTC),
543 {
544 // Disable write protection
545 // This is safe, as we're only writin the correct and expected values.
546 self.regs.wpr.write(|w| unsafe { w.bits(0xCA) });
547 self.regs.wpr.write(|w| unsafe { w.bits(0x53) });
548
549 // todo: L4 has ICSR and ISR regs. Maybe both for backwards compat?
550
551 cfg_if! {
552 if #[cfg(any(feature = "l5", feature = "g0", feature = "g4", feature = "l412", feature = "wl", feature = "h5"))] {
553 // Enter init mode if required. This is generally used to edit the clock or calendar,
554 // but not for initial enabling steps.
555 if init_mode && self.regs.icsr.read().initf().bit_is_clear() {
556 // are we already in init mode?
557 self.regs.icsr.modify(|_, w| w.init().set_bit());
558 while self.regs.icsr.read().initf().bit_is_clear() {} // wait to return to init state
559 }
560
561 // Edit the regs specified in the closure, now that they're writable.
562 closure(&mut self.regs);
563
564 if init_mode {
565 self.regs.icsr.modify(|_, w| w.init().clear_bit()); // Exits init mode
566 while self.regs.icsr.read().initf().bit_is_set() {}
567 }
568 // } else if #[cfg(feature = "wl")] {
569 // if init_mode && self.regs.isr.read().initf().bit_is_clear() {
570 // self.regs.icsr.modify(|_, w| w.init().set_bit());
571 // while self.regs.icsr.read().initf().bit_is_clear() {} // wait to return to init state
572 // }
573
574 // closure(&mut self.regs);
575
576 // if init_mode {
577 // self.regs.icsr.modify(|_, w| w.init().clear_bit()); // Exits init mode
578 // while self.regs.sr.read().initf().bit_is_set() {}
579 // }
580 } else {
581 if init_mode && self.regs.isr.read().initf().bit_is_clear() {
582 self.regs.isr.modify(|_, w| w.init().set_bit());
583 while self.regs.isr.read().initf().bit_is_clear() {} // wait to return to init state
584 }
585
586 closure(&mut self.regs);
587
588 if init_mode {
589 self.regs.isr.modify(|_, w| w.init().clear_bit()); // Exits init mode
590 while self.regs.isr.read().initf().bit_is_set() {}
591 }
592 }
593 }
594
595 // Re-enable write protection.
596 // This is safe, as the field accepts the full range of 8-bit values.
597 self.regs.wpr.write(|w| unsafe { w.bits(0xFF) });
598 }
599
600 /// set time using NaiveTime (ISO 8601 time without timezone)
601 /// Hour format is 24h
602 pub fn set_time(&mut self, time: &NaiveTime) -> Result<(), Error> {
603 self.set_24h_fmt();
604 let (ht, hu) = bcd2_encode(time.hour())?;
605 let (mnt, mnu) = bcd2_encode(time.minute())?;
606 let (st, su) = bcd2_encode(time.second())?;
607
608 self.edit_regs(true, |regs| {
609 regs.tr.write(|w| unsafe {
610 w.ht().bits(ht);
611 w.hu().bits(hu);
612 w.mnt().bits(mnt);
613 w.mnu().bits(mnu);
614 w.st().bits(st);
615 w.su().bits(su);
616 w.pm().clear_bit()
617 })
618 });
619
620 Ok(())
621 }
622
623 /// Set the seconds component of the RTC's current time.
624 pub fn set_seconds(&mut self, seconds: u8) -> Result<(), Error> {
625 if seconds > 59 {
626 return Err(Error::InvalidInputData);
627 }
628 let (st, su) = bcd2_encode(seconds as u32)?;
629 self.edit_regs(true, |regs| {
630 regs.tr
631 .modify(|_, w| unsafe { w.st().bits(st).su().bits(su) })
632 });
633
634 Ok(())
635 }
636
637 /// Set the minutes component of the RTC's current time.
638 pub fn set_minutes(&mut self, minutes: u8) -> Result<(), Error> {
639 if minutes > 59 {
640 return Err(Error::InvalidInputData);
641 }
642 let (mnt, mnu) = bcd2_encode(minutes as u32)?;
643 self.edit_regs(true, |regs| {
644 regs.tr
645 .modify(|_, w| unsafe { w.mnt().bits(mnt).mnu().bits(mnu) })
646 });
647
648 Ok(())
649 }
650
651 /// Set the hours component of the RTC's current time.
652 pub fn set_hours(&mut self, hours: u8) -> Result<(), Error> {
653 let (ht, hu) = bcd2_encode(hours as u32)?;
654
655 self.edit_regs(true, |regs| {
656 regs.tr
657 .modify(|_, w| unsafe { w.ht().bits(ht).hu().bits(hu) })
658 });
659
660 Ok(())
661 }
662
663 /// Set the weekday component of the RTC's current date.
664 pub fn set_weekday(&mut self, weekday: u8) -> Result<(), Error> {
665 if !(1..=7).contains(&weekday) {
666 return Err(Error::InvalidInputData);
667 }
668 self.edit_regs(true, |regs| {
669 regs.dr.modify(|_, w| unsafe { w.wdu().bits(weekday) })
670 });
671
672 Ok(())
673 }
674
675 /// Set the day component of the RTC's current date.
676 pub fn set_day(&mut self, day: u8) -> Result<(), Error> {
677 if !(1..=31).contains(&day) {
678 return Err(Error::InvalidInputData);
679 }
680 let (dt, du) = bcd2_encode(day as u32)?;
681 self.edit_regs(true, |regs| {
682 regs.dr
683 .modify(unsafe { |_, w| w.dt().bits(dt).du().bits(du) })
684 });
685
686 Ok(())
687 }
688
689 /// Set the month component of the RTC's current date.
690 pub fn set_month(&mut self, month: u8) -> Result<(), Error> {
691 if !(1..=12).contains(&month) {
692 return Err(Error::InvalidInputData);
693 }
694 let (mt, mu) = bcd2_encode(month as u32)?;
695 self.edit_regs(true, |regs| {
696 regs.dr
697 .modify(|_, w| unsafe { w.mt().bit(mt > 0).mu().bits(mu) })
698 });
699
700 Ok(())
701 }
702
703 /// Set the year component of the RTC's current date.
704 pub fn set_year(&mut self, year: u16) -> Result<(), Error> {
705 if !(1970..=2038).contains(&year) {
706 // todo: Is this right?
707 return Err(Error::InvalidInputData);
708 }
709 let (yt, yu) = bcd2_encode(year as u32 - 2_000)?;
710 // todo RTC is 2000 based ? Not sure best way to handle this.
711 self.edit_regs(true, |regs| {
712 regs.dr
713 .modify(|_, w| unsafe { w.yt().bits(yt).yu().bits(yu) })
714 });
715
716 Ok(())
717 }
718
719 /// Set the date using NaiveDate (ISO 8601 calendar date without timezone).
720 /// WeekDay is set using the `set_weekday` method
721 pub fn set_date(&mut self, date: &NaiveDate) -> Result<(), Error> {
722 if date.year() < 1970 {
723 // todo: Is this right?
724 return Err(Error::InvalidInputData);
725 }
726
727 let (yt, yu) = bcd2_encode((date.year() - 2_000) as u32)?;
728 let (mt, mu) = bcd2_encode(date.month())?;
729 let (dt, du) = bcd2_encode(date.day())?;
730
731 self.edit_regs(true, |regs| {
732 regs.dr.write(|w| unsafe {
733 w.dt().bits(dt);
734 w.du().bits(du);
735 w.mt().bit(mt > 0);
736 w.mu().bits(mu);
737 w.yt().bits(yt);
738 w.yu().bits(yu)
739 })
740 });
741
742 Ok(())
743 }
744
745 /// Set the current datetime.
746 pub fn set_datetime(&mut self, date: &NaiveDateTime) -> Result<(), Error> {
747 if date.year() < 1970 {
748 // todo is this right?
749 return Err(Error::InvalidInputData);
750 }
751
752 self.set_24h_fmt();
753 let (yt, yu) = bcd2_encode((date.year() - 2_000) as u32)?;
754 let (mt, mu) = bcd2_encode(date.month())?;
755 let (dt, du) = bcd2_encode(date.day())?;
756
757 let (ht, hu) = bcd2_encode(date.hour())?;
758 let (mnt, mnu) = bcd2_encode(date.minute())?;
759 let (st, su) = bcd2_encode(date.second())?;
760
761 self.edit_regs(true, |regs| {
762 regs.dr.write(|w| unsafe {
763 w.dt().bits(dt);
764 w.du().bits(du);
765 w.mt().bit(mt > 0);
766 w.mu().bits(mu);
767 w.yt().bits(yt);
768 w.yu().bits(yu)
769 })
770 });
771
772 self.edit_regs(true, |regs| {
773 regs.tr.write(|w| unsafe {
774 w.ht().bits(ht);
775 w.hu().bits(hu);
776 w.mnt().bits(mnt);
777 w.mnu().bits(mnu);
778 w.st().bits(st);
779 w.su().bits(su);
780 w.pm().clear_bit()
781 })
782 });
783
784 Ok(())
785 }
786
787 /// Get the seconds component of the current time.
788 pub fn get_seconds(&mut self) -> u8 {
789 let tr = self.regs.tr.read();
790 bcd2_decode(tr.st().bits(), tr.su().bits()) as u8
791 }
792
793 /// Get the minutes component of the current time.
794 pub fn get_minutes(&mut self) -> u8 {
795 let tr = self.regs.tr.read();
796 bcd2_decode(tr.mnt().bits(), tr.mnu().bits()) as u8
797 }
798
799 /// Get the hours component of the current time.
800 pub fn get_hours(&mut self) -> u8 {
801 let tr = self.regs.tr.read();
802 bcd2_decode(tr.ht().bits(), tr.hu().bits()) as u8
803 }
804
805 /// Get the current time.
806 pub fn get_time(&mut self) -> NaiveTime {
807 NaiveTime::from_hms_opt(
808 self.get_hours().into(),
809 self.get_minutes().into(),
810 self.get_seconds().into(),
811 )
812 .unwrap()
813 }
814
815 /// Get the weekday component of the current date.
816 pub fn get_weekday(&mut self) -> u8 {
817 let dr = self.regs.dr.read();
818 bcd2_decode(dr.wdu().bits(), 0x00) as u8
819 }
820
821 /// Get the day component of the current date.
822 pub fn get_day(&mut self) -> u8 {
823 let dr = self.regs.dr.read();
824 bcd2_decode(dr.dt().bits(), dr.du().bits()) as u8
825 }
826
827 /// Get the month component of the current date.
828 pub fn get_month(&mut self) -> u8 {
829 let dr = self.regs.dr.read();
830 let mt: u8 = if dr.mt().bit() { 1 } else { 0 };
831 bcd2_decode(mt, dr.mu().bits()) as u8
832 }
833
834 /// Get the year component of the current date.
835 pub fn get_year(&mut self) -> u16 {
836 let dr = self.regs.dr.read();
837 (bcd2_decode(dr.yt().bits(), dr.yu().bits()) + 2000) as u16
838 }
839
840 /// Get the current date.
841 pub fn get_date(&mut self) -> NaiveDate {
842 NaiveDate::from_ymd_opt(
843 self.get_year().into(),
844 self.get_month().into(),
845 self.get_day().into(),
846 )
847 .unwrap()
848 }
849
850 /// Get the current datetime.
851 pub fn get_datetime(&mut self) -> NaiveDateTime {
852 NaiveDate::from_ymd_opt(
853 self.get_year().into(),
854 self.get_month().into(),
855 self.get_day().into(),
856 )
857 .unwrap()
858 .and_hms_opt(
859 self.get_hours().into(),
860 self.get_minutes().into(),
861 self.get_seconds().into(),
862 )
863 .unwrap()
864 }
865}
866
867// Two 32-bit registers (RTC_TR and RTC_DR) contain the seconds, minutes, hours (12- or 24-hour format), day (day
868// of week), date (day of month), month, and year, expressed in binary coded decimal format
869// (BCD). The sub-seconds value is also available in binary format.
870//
871// The following helper functions encode into BCD format from integer and
872// decode to an integer from a BCD value respectively.
873fn bcd2_encode(word: u32) -> Result<(u8, u8), Error> {
874 let l = match (word / 10).try_into() {
875 Ok(v) => v,
876 Err(_) => {
877 return Err(Error::InvalidInputData);
878 }
879 };
880 let r = match (word % 10).try_into() {
881 Ok(v) => v,
882 Err(_) => {
883 return Err(Error::InvalidInputData);
884 }
885 };
886
887 Ok((l, r))
888}
889
890fn bcd2_decode(fst: u8, snd: u8) -> u32 {
891 (fst * 10 + snd).into()
892}