stm32_hal2/spi/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
//! Support for the Serial Peripheral Interface (SPI) bus peripheral.
//! Provides APIs to configure, read, and write from
//! SPI, with blocking, nonblocking, and DMA functionality.
use core::{ops::Deref, ptr};
cfg_if::cfg_if! {
if #[cfg(any(feature = "h5", feature = "h7"))] {
mod h;
pub use h::*;
} else {
mod baseline;
pub use baseline::*;
}
}
use cfg_if::cfg_if;
use crate::{pac, util::RccPeriph};
cfg_if! {
if #[cfg(all(feature = "g0", not(any(feature = "g0b1", feature = "g0c1"))))] {
use crate::pac::dma as dma_p;
use crate::pac::DMA as DMA1;
} else {
use crate::pac::dma1 as dma_p;
use crate::pac::DMA1;
}
}
#[cfg(any(feature = "f3", feature = "l4"))]
use crate::dma::DmaInput;
#[cfg(not(any(feature = "f4", feature = "l552")))]
use crate::dma::{self, ChannelCfg, Dma, DmaChannel}; // todo temp
#[macro_export]
macro_rules! check_errors {
($sr:expr) => {
#[cfg(feature = "h7")]
let crc_error = $sr.crce().bit_is_set();
#[cfg(not(feature = "h7"))]
let crc_error = $sr.crcerr().bit_is_set();
if $sr.ovr().bit_is_set() {
return Err(SpiError::Overrun);
} else if $sr.modf().bit_is_set() {
return Err(SpiError::ModeFault);
} else if crc_error {
return Err(SpiError::Crc);
}
};
}
/// SPI error
#[non_exhaustive]
#[derive(Copy, Clone, Debug, defmt::Format)]
pub enum SpiError {
/// Overrun occurred
Overrun,
/// Mode fault occurred
ModeFault,
/// CRC error
Crc,
Hardware,
DuplexFailed, // todo temp?
}
/// Set the factor to divide the APB clock by to set baud rate. Sets `SPI_CR1` register, `BR` field.
/// On H7, sets CFG1 register, `MBR` field.
#[derive(Copy, Clone)]
#[repr(u8)]
pub enum BaudRate {
Div2 = 0b000,
Div4 = 0b001,
Div8 = 0b010,
Div16 = 0b011,
Div32 = 0b100,
Div64 = 0b101,
Div128 = 0b110,
Div256 = 0b111,
}
#[derive(Clone, Copy)]
#[repr(u8)]
/// FIFO reception threshold Sets `SPI_CR2` register, `FRXTH` field.
pub enum ReceptionThresh {
/// RXNE event is generated if the FIFO level is greater than or equal to 1/2 (16-bit)
D16 = 0,
/// RXNE event is generated if the FIFO level is greater than or equal to 1/4 (8-bit)
D8 = 1,
}
#[derive(Clone, Copy, PartialEq)]
/// Select the duplex communication mode between the 2 devices. Sets `CR1` register, `BIDIMODE`,
/// and `RXONLY` fields.
pub enum SpiCommMode {
FullDuplex,
HalfDuplex,
/// Simplex Transmit only. (Cfg same as Full Duplex, but ignores input)
TransmitOnly,
/// Simplex Receive only.
ReceiveOnly,
}
#[derive(Clone, Copy, PartialEq)]
/// Used for managing NSS / CS pin. Sets CR1 register, SSM field.
/// On H7, sets CFG2 register, `SSOE` field.
pub enum SlaveSelect {
/// In this configuration, slave select information
/// is driven internally by the SSI bit value in register SPIx_CR1. The external NSS pin is
/// free for other application uses.
Software,
/// This configuration is only used when the
/// MCU is set as master. The NSS pin is managed by the hardware. The NSS signal
/// is driven low as soon as the SPI is enabled in master mode (SPE=1), and is kept
/// low until the SPI is disabled (SPE =0). A pulse can be generated between
/// continuous communications if NSS pulse mode is activated (NSSP=1). The SPI
/// cannot work in multimaster configuration with this NSS setting.
HardwareOutEnable,
/// If the microcontroller is acting as the
/// master on the bus, this configuration allows multimaster capability. If the NSS pin
/// is pulled low in this mode, the SPI enters master mode fault state and the device is
/// automatically reconfigured in slave mode. In slave mode, the NSS pin works as a
/// standard “chip select” input and the slave is selected while NSS line is at low level.
HardwareOutDisable,
}
cfg_if! {
if #[cfg(feature = "embedded_hal")] {
type SpiModeType = embedded_hal::spi::Mode;
} else {
#[derive(Clone, Copy)]
#[repr(u8)]
/// Clock polarity. Sets CFGR2 register, CPOL field. Stored in the config as a field of `SpiMode`.
pub enum SpiPolarity {
/// Clock signal low when idle
IdleLow = 0,
/// Clock signal high when idle
IdleHigh = 1,
}
#[derive(Clone, Copy)]
#[repr(u8)]
/// Clock phase. Sets CFGR2 register, CPHA field. Stored in the config as a field of `SpiMode`.
pub enum SpiPhase {
/// Data in "captured" on the first clock transition
CaptureOnFirstTransition = 0,
/// Data in "captured" on the second clock transition
CaptureOnSecondTransition = 1,
}
#[derive(Clone, Copy)]
/// SPI mode. Sets CFGR2 reigster, CPOL and CPHA fields.
pub struct SpiMode {
/// Clock polarity
pub polarity: SpiPolarity,
/// Clock phase
pub phase: SpiPhase,
}
impl SpiMode {
/// Set Spi Mode 0: Idle low, capture on first transition.
/// Data sampled on rising edge and shifted out on the falling edge
pub fn mode0() -> Self {
Self {
polarity: SpiPolarity::IdleLow,
phase: SpiPhase::CaptureOnFirstTransition,
}
}
/// Set Spi Mode 1: Idle low, capture on second transition.
/// Data sampled on the falling edge and shifted out on the rising edge
pub fn mode1() -> Self {
Self {
polarity: SpiPolarity::IdleLow,
phase: SpiPhase::CaptureOnSecondTransition,
}
}
/// Set Spi Mode 2: Idle high, capture on first transition.
/// Data sampled on the rising edge and shifted out on the falling edge
pub fn mode2() -> Self {
Self {
polarity: SpiPolarity::IdleHigh,
phase: SpiPhase::CaptureOnFirstTransition,
}
}
/// Set Spi Mode 3: Idle high, capture on second transition.
/// Data sampled on the falling edge and shifted out on the rising edge
pub fn mode3() -> Self {
Self {
polarity: SpiPolarity::IdleHigh,
phase: SpiPhase::CaptureOnSecondTransition,
}
}
}
type SpiModeType = SpiMode;
}
}
#[derive(Clone)]
/// Configuration data for SPI.
pub struct SpiConfig {
/// SPI mode associated with Polarity and Phase. Defaults to Mode0: Idle low, capture on first transition.
pub mode: SpiModeType,
/// Sets the (duplex) communication mode between the devices. Defaults to full duplex.
pub comm_mode: SpiCommMode,
/// Controls use of hardware vs software CS/NSS pin. Defaults to software.
pub slave_select: SlaveSelect,
/// Data size. Defaults to 8 bits.
pub data_size: DataSize,
/// FIFO reception threshhold. Defaults to 8 bits.
pub fifo_reception_thresh: ReceptionThresh,
// pub cs_delay: f32,
// pub swap_miso_mosi: bool,
// pub suspend_when_inactive: bool,
}
impl Default for SpiConfig {
fn default() -> Self {
cfg_if! {
if #[cfg(feature = "embedded_hal")] {
let mode0 = embedded_hal::spi::MODE_0;
} else {
let mode0 = SpiModeType::mode0();
}
}
Self {
mode: mode0,
comm_mode: SpiCommMode::FullDuplex,
slave_select: SlaveSelect::Software,
data_size: DataSize::D8,
fifo_reception_thresh: ReceptionThresh::D8,
}
}
}
/// Represents a Serial Peripheral Interface (SPI) peripheral.
pub struct Spi<R> {
pub regs: R,
pub cfg: SpiConfig,
}
impl<R> Spi<R>
where
R: Deref<Target = pac::spi1::RegisterBlock> + RccPeriph,
{
/// Stop a DMA transfer. Stops the channel, and disables the `txdmaen` and `rxdmaen` bits.
/// Run this after each transfer completes - you may wish to do this in an interrupt
/// (eg DMA transfer complete) instead of blocking. `channel2` is an optional second channel
/// to stop; eg if you have both a tx and rx channel.
#[cfg(not(any(feature = "f4", feature = "l552")))]
pub fn stop_dma(
&mut self,
channel: DmaChannel,
channel2: Option<DmaChannel>,
dma_periph: dma::DmaPeriph,
) {
// (RM:) To close communication it is mandatory to follow these steps in order:
// 1. Disable DMA streams for Tx and Rx in the DMA registers, if the streams are used.
dma::stop(dma_periph, channel);
if let Some(ch2) = channel2 {
dma::stop(dma_periph, ch2);
};
// 2. Disable the SPI by following the SPI disable procedure:
// self.disable();
// 3. Disable DMA Tx and Rx buffers by clearing the TXDMAEN and RXDMAEN bits in the
// SPI_CR2 register, if DMA Tx and/or DMA Rx are used.
#[cfg(not(feature = "h7"))]
self.regs.cr2.modify(|_, w| {
w.txdmaen().clear_bit();
w.rxdmaen().clear_bit()
});
#[cfg(feature = "h7")]
self.regs.cfg1.modify(|_, w| {
w.txdmaen().clear_bit();
w.rxdmaen().clear_bit()
});
}
/// Convenience function that clears the interrupt, and stops the transfer. For use with the TC
/// interrupt only.
#[cfg(not(any(feature = "f4", feature = "l552")))]
pub fn cleanup_dma(
&mut self,
dma_periph: dma::DmaPeriph,
channel_tx: DmaChannel,
channel_rx: Option<DmaChannel>,
) {
// The hardware seems to automatically enable Tx too; and we use it when transmitting.
dma::clear_interrupt(dma_periph, channel_tx, dma::DmaInterrupt::TransferComplete);
if let Some(ch_rx) = channel_rx {
dma::clear_interrupt(dma_periph, ch_rx, dma::DmaInterrupt::TransferComplete);
}
self.stop_dma(channel_tx, channel_rx, dma_periph);
}
/// Print the (raw) contents of the status register.
pub fn read_status(&self) -> u32 {
unsafe { self.regs.sr.read().bits() }
}
}