stm32_hal2/spi/h.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
// Note: This module contains lots of C+P from stm32h7xx-hal.
use core::{cell::UnsafeCell, ops::Deref, ptr};
use super::*;
use crate::{
check_errors,
pac::{self, RCC},
util::RccPeriph,
MAX_ITERS,
};
// Depth of FIFO to use. See RM0433 Rev 7, Table 409. Note that 16 is acceptable on this MCU,
// for SPI 1-3
const FIFO_LEN: usize = 8;
/// Possible interrupt types. Enable these in SPIx_IER. Check with SR. Clear with IFCR
#[derive(Copy, Clone)]
pub enum SpiInterrupt {
/// Additional number of transactions reload interrupt enable (TSERFIE)
NumberOfTransactionsReload,
/// Mode fault (MODFIE)
ModeFault,
/// TIFRE (TIFREIE)
Tifre,
/// CRC error (CRCEIE)
CrcError,
/// Overrun (OVRIE)
Overrun,
/// Underrun (UNDRIE)
Underrun,
/// TXTFIE
Txtfie,
/// EOT, SUSP, and TXC (EOTIE)
EotSuspTxc,
/// DXP (TXPIE)
Dxp,
/// TXP (TXPIE)
Txp,
/// RXP (RXPIE)
Rxp,
}
/// Number of bits in at single SPI data frame. Sets `CFGR1` register, `DSIZE` field.
#[derive(Copy, Clone)]
#[repr(u8)]
pub enum DataSize {
D4 = 3,
D5 = 4,
D6 = 5,
D7 = 6,
D8 = 7,
D9 = 8,
D10 = 9,
D11 = 10,
D12 = 11,
D13 = 12,
D14 = 13,
D15 = 14,
D16 = 15,
D17 = 16,
D18 = 17,
D19 = 18,
D20 = 19,
D21 = 20,
D22 = 21,
D23 = 22,
D24 = 23,
D25 = 24,
D26 = 25,
D27 = 26,
D28 = 27,
D29 = 28,
D30 = 29,
D31 = 30,
D32 = 31,
}
impl<R> Spi<R>
where
R: Deref<Target = pac::spi1::RegisterBlock> + RccPeriph,
{
/// Initialize an SPI peripheral, including configuration register writes, and enabling and resetting
/// its RCC peripheral clock.
pub fn new(regs: R, cfg: SpiConfig, baud_rate: BaudRate) -> Self {
let rcc = unsafe { &(*RCC::ptr()) };
R::en_reset(rcc);
// H743 RM, section 50.4.8: Configuration of SPI.
// 1. Write the proper GPIO registers: Configure GPIO for MOSI, MISO and SCK pins.
// (Handled in application code)
// 2. Write to the SPI_CFG1 and SPI_CFG2 registers to set up proper values of all not
// reserved bits and bit fields included there with next exceptions:
// a) SSOM, SSOE, MBR[2:0], MIDI[3:0] and MSSI[3:0] are required at master mode
// only, the MSSI bits take effect when SSOE is set, MBR setting is required for slave
// at TI mode, too
// b) UDRDET[1:0] and UDRCFG[1:0] are required at slave mode only,
// c) CRCSIZE[4:0] is required if CRCEN is set,
// d) CPOL, CPHA, LSBFRST, SSOM, SSOE, SSIOP and SSM are not required at TI
// mode.
// e) Once the AFCNTR bit is set at SPI_CFG2 register, all the SPI outputs start to be
// propagated onto the associated GPIO pins regardless the peripheral enable so
// any later configurations changes of the SPI_CFG1 and SPI_CFG2 registers can
// affect level of signals at these pins.
// f) The I2SMOD bit at SPI_I2SCFGR register has to be kept cleared to prevent any
// unexpected influence of occasional I2S configuration.
// [St forum thread on how to set up SPI in master mode avoiding mode faults:
// https://community.st.com/s/question/0D50X0000AFrHS6SQN/stm32h7-what-is-the-proper-
// way-to-make-spi-work-in-master-mode
regs.cr1
.modify(|_, w| w.ssi().bit(cfg.slave_select == SlaveSelect::Software));
regs.cfg1.modify(|_, w| {
w.mbr().bits(baud_rate as u8);
w.dsize().bits(cfg.data_size as u8);
w.crcen().clear_bit()
});
// Specifies minimum time delay (expressed in SPI clock cycles periods) inserted between two
// consecutive data frames in master mode. In clock cycles; 0 - 15. (hardware CS)
let inter_word_delay = 0;
regs.cfg2.modify(|_, w| {
w.cpol().bit(cfg.mode.polarity as u8 != 0);
w.cpha().bit(cfg.mode.phase as u8 != 0);
w.master().set_bit();
w.ssm().bit(cfg.slave_select == SlaveSelect::Software);
w.ssoe().bit(cfg.slave_select != SlaveSelect::Software);
w.midi().bits(inter_word_delay);
w.master().set_bit();
w.comm().bits(0b00) // Full-duplex mode
});
// 3. Write to the SPI_CR2 register to select length of the transfer, if it is not known TSIZE
// has to be programmed to zero.
// Resetting this here; will be set to the appropriate value at each transaction.
regs.cr2.modify(|_, w| w.tsize().bits(0));
// 4. Write to SPI_CRCPOLY and into TCRCINI, RCRCINI and CRC33_17 bits at
// SPI2S_CR1 register to configure the CRC polynomial and CRC calculation if needed.
// 5. Configure DMA streams dedicated for the SPI Tx and Rx in DMA registers if the DMA
// streams are used (see chapter Communication using DMA).
// 6. Program the IOLOCK bit in the SPI_CFG1 register if the configuration protection is
// required (for safety).
regs.cr1.modify(|_, w| w.spe().set_bit());
Self { regs, cfg }
}
/// Change the SPI baud rate.
pub fn reclock(&mut self, baud_rate: BaudRate) {
self.regs.cr1.modify(|_, w| w.spe().clear_bit());
self.regs
.cfg1
.modify(|_, w| unsafe { w.mbr().bits(baud_rate as u8) });
self.regs.cr1.modify(|_, w| w.spe().set_bit());
}
/// L44 RM, section 40.4.9: "Procedure for disabling the SPI"
/// When SPI is disabled, it is mandatory to follow the disable procedures described in this
/// paragraph. It is important to do this before the system enters a low-power mode when the
/// peripheral clock is stopped. Ongoing transactions can be corrupted in this case. In some
/// modes the disable procedure is the only way to stop continuous communication running.
pub fn disable(&mut self) {
// The correct disable procedure is (except when receive only mode is used):
// 1. Wait until TXC=1 and/or EOT=1 (no more data to transmit and last data frame sent).
// When CRC is used, it is sent automatically after the last data in the block is processed.
// TXC/EOT is set when CRC frame is completed in this case. When a transmission is
// suspended the software has to wait till CSTART bit is cleared.
while self.regs.sr.read().txc().bit_is_clear() {}
while self.regs.sr.read().eot().bit_is_clear() {}
// 2. Read all RxFIFO data (until RXWNE=0 and RXPLVL=00)
while self.regs.sr.read().rxwne().bit_is_set() || self.regs.sr.read().rxplvl().bits() != 0 {
unsafe { ptr::read_volatile(&self.regs.rxdr as *const _ as *const u8) };
}
// 3. Disable the SPI (SPE=0).
self.regs.cr1.modify(|_, w| w.spe().clear_bit());
}
// todo: Temp C+P from h7xx hal while troubleshooting.
/// Internal implementation for exchanging a word
///
/// * Assumes the transaction has started (CSTART handled externally)
/// * Assumes at least one word has already been written to the Tx FIFO
fn exchange(&mut self, word: u8) -> Result<u8, SpiError> {
let status = self.regs.sr.read();
check_errors!(status);
let mut i = 0;
while !self.regs.sr.read().dxp().is_available() {
i += 1;
if i >= MAX_ITERS {
return Err(SpiError::Hardware);
}
}
// NOTE(write_volatile/read_volatile) write/read only 1 word
unsafe {
let txdr = &self.regs.txdr as *const _ as *const UnsafeCell<u8>;
ptr::write_volatile(UnsafeCell::raw_get(txdr), word);
return Ok(ptr::read_volatile(&self.regs.rxdr as *const _ as *const u8));
}
}
/// Read a single byte if available, or block until it's available.
///
/// Assumes the transaction has started (CSTART handled externally)
/// Assumes at least one word has already been written to the Tx FIFO
pub fn read(&mut self) -> Result<u8, SpiError> {
check_errors!(self.regs.sr.read());
let mut i = 0;
while !self.regs.sr.read().rxp().is_not_empty() {
i += 1;
if i >= MAX_ITERS {
return Err(SpiError::Hardware);
}
}
// NOTE(read_volatile) read only 1 word
return Ok(unsafe { ptr::read_volatile(&self.regs.rxdr as *const _ as *const u8) });
}
/// Write multiple bytes on the SPI line, blocking until complete.
pub fn write(&mut self, write_words: &[u8]) -> Result<(), SpiError> {
// both buffers are the same length
if write_words.is_empty() {
return Ok(());
}
// Fill the first half of the write FIFO
let len = write_words.len();
let mut write = write_words.iter();
for _ in 0..core::cmp::min(FIFO_LEN, len) {
self.send(*write.next().unwrap());
}
// Continue filling write FIFO and emptying read FIFO
for word in write {
let _ = self.exchange(*word);
}
// Dummy read from the read FIFO
for _ in 0..core::cmp::min(FIFO_LEN, len) {
let _ = self.read();
}
Ok(())
}
/// Read multiple bytes to a buffer, blocking until complete.
pub fn transfer(&mut self, words: &mut [u8]) -> Result<(), SpiError> {
if words.is_empty() {
return Ok(());
}
// Fill the first half of the write FIFO
let len = words.len();
for i in 0..core::cmp::min(FIFO_LEN, len) {
self.send(words[i]);
}
for i in FIFO_LEN..len + FIFO_LEN {
if i < len {
// Continue filling write FIFO and emptying read FIFO
let read_value = self.exchange(words[i])?;
words[i - FIFO_LEN] = read_value;
} else {
// Finish emptying the read FIFO
words[i - FIFO_LEN] = self.read()?;
}
}
Ok(())
}
fn send(&mut self, word: u8) -> Result<(), SpiError> {
check_errors!(self.regs.sr.read());
// NOTE(write_volatile) see note above
unsafe {
let txdr = &self.regs.txdr as *const _ as *const UnsafeCell<u8>;
ptr::write_volatile(UnsafeCell::raw_get(txdr), word)
}
// write CSTART to start a transaction in
// master mode
self.regs.cr1.modify(|_, w| w.cstart().started());
return Ok(());
}
/// Receive data using DMA. See H743 RM, section 50.4.14: Communication using DMA
pub unsafe fn read_dma(
&mut self,
buf: &mut [u8],
channel: DmaChannel,
channel_cfg: ChannelCfg,
dma_periph: dma::DmaPeriph,
) {
// todo: Accept u16 and u32 words too.
let (ptr, len) = (buf.as_mut_ptr(), buf.len());
self.regs.cr1.modify(|_, w| w.spe().clear_bit());
self.regs.cfg1.modify(|_, w| w.rxdmaen().set_bit());
let periph_addr = &self.regs.rxdr as *const _ as u32;
let num_data = len as u32;
match dma_periph {
dma::DmaPeriph::Dma1 => {
let mut regs = unsafe { &(*DMA1::ptr()) };
dma::cfg_channel(
&mut regs,
channel,
periph_addr,
ptr as u32,
num_data,
dma::Direction::ReadFromPeriph,
dma::DataSize::S8,
dma::DataSize::S8,
channel_cfg,
);
}
dma::DmaPeriph::Dma2 => {
let mut regs = unsafe { &(*pac::DMA2::ptr()) };
dma::cfg_channel(
&mut regs,
channel,
periph_addr,
ptr as u32,
num_data,
dma::Direction::ReadFromPeriph,
dma::DataSize::S8,
dma::DataSize::S8,
channel_cfg,
);
}
}
self.regs.cr1.modify(|_, w| w.spe().set_bit());
self.regs.cr1.modify(|_, w| w.cstart().set_bit()); // Must be separate from SPE enable.
}
pub unsafe fn write_dma(
&mut self,
buf: &[u8],
channel: DmaChannel,
channel_cfg: ChannelCfg,
dma_periph: dma::DmaPeriph,
) {
// Static write and read buffers?
let (ptr, len) = (buf.as_ptr(), buf.len());
self.regs.cr1.modify(|_, w| w.spe().clear_bit());
// todo: Accept u16 words too.
// A DMA access is requested when the TXE or RXNE enable bit in the SPIx_CR2 register is
// set. Separate requests must be issued to the Tx and Rx buffers.
// In transmission, a DMA request is issued each time TXE is set to 1. The DMA then
// writes to the SPIx_DR register.
// When starting communication using DMA, to prevent DMA channel management raising
// error events, these steps must be followed in order:
//
// 1. Enable DMA Rx buffer in the RXDMAEN bit in the SPI_CR2 register, if DMA Rx is
// used.
// (N/A)
// 2. Enable DMA streams for Tx and Rx in DMA registers, if the streams are used.
let periph_addr = &self.regs.txdr as *const _ as u32;
let num_data = len as u32;
match dma_periph {
dma::DmaPeriph::Dma1 => {
let mut regs = unsafe { &(*DMA1::ptr()) };
dma::cfg_channel(
&mut regs,
channel,
periph_addr,
ptr as u32,
num_data,
dma::Direction::ReadFromMem,
dma::DataSize::S8,
dma::DataSize::S8,
channel_cfg,
);
}
dma::DmaPeriph::Dma2 => {
let mut regs = unsafe { &(*pac::DMA2::ptr()) };
dma::cfg_channel(
&mut regs,
channel,
periph_addr,
ptr as u32,
num_data,
dma::Direction::ReadFromMem,
dma::DataSize::S8,
dma::DataSize::S8,
channel_cfg,
);
}
}
// 3. Enable DMA Tx buffer in the TXDMAEN bit in the SPI_CR2 register, if DMA Tx is used.
self.regs.cfg1.modify(|_, w| w.txdmaen().set_bit());
// 4. Enable the SPI by setting the SPE bit.
self.regs.cr1.modify(|_, w| w.spe().set_bit());
self.regs.cr1.modify(|_, w| w.cstart().set_bit()); // Must be separate from SPE enable.
}
/// Transfer data from DMA; this is the basic reading API, using both write and read transfers:
/// It performs a write with register data, and reads to a buffer.
pub unsafe fn transfer_dma(
&mut self,
buf_write: &[u8],
buf_read: &mut [u8],
channel_write: DmaChannel,
channel_read: DmaChannel,
channel_cfg_write: ChannelCfg,
channel_cfg_read: ChannelCfg,
dma_periph: dma::DmaPeriph,
) {
// todo: Accept u16 and u32 words too.
let (ptr_write, len_write) = (buf_write.as_ptr(), buf_write.len());
let (ptr_read, len_read) = (buf_read.as_mut_ptr(), buf_read.len());
self.regs.cr1.modify(|_, w| w.spe().clear_bit());
// todo: DRY here, with `write_dma`, and `read_dma`.
let periph_addr_write = &self.regs.txdr as *const _ as u32;
let periph_addr_read = &self.regs.rxdr as *const _ as u32;
let num_data_write = len_write as u32;
let num_data_read = len_read as u32;
// Be careful - order of enabling Rx and Tx may matter, along with other things like when we
// enable the channels, and the SPI periph.
self.regs.cfg1.modify(|_, w| w.rxdmaen().set_bit());
match dma_periph {
dma::DmaPeriph::Dma1 => {
let mut regs = unsafe { &(*DMA1::ptr()) };
dma::cfg_channel(
&mut regs,
channel_write,
periph_addr_write,
ptr_write as u32,
num_data_write,
dma::Direction::ReadFromMem,
dma::DataSize::S8,
dma::DataSize::S8,
channel_cfg_write,
);
dma::cfg_channel(
&mut regs,
channel_read,
periph_addr_read,
ptr_read as u32,
num_data_read,
dma::Direction::ReadFromPeriph,
dma::DataSize::S8,
dma::DataSize::S8,
channel_cfg_read,
);
}
dma::DmaPeriph::Dma2 => {
let mut regs = unsafe { &(*pac::DMA2::ptr()) };
dma::cfg_channel(
&mut regs,
channel_write,
periph_addr_write,
ptr_write as u32,
num_data_write,
dma::Direction::ReadFromMem,
dma::DataSize::S8,
dma::DataSize::S8,
channel_cfg_write,
);
dma::cfg_channel(
&mut regs,
channel_read,
periph_addr_read,
ptr_read as u32,
num_data_read,
dma::Direction::ReadFromPeriph,
dma::DataSize::S8,
dma::DataSize::S8,
channel_cfg_read,
);
}
}
self.regs.cfg1.modify(|_, w| w.txdmaen().set_bit());
self.regs.cr1.modify(|_, w| w.spe().set_bit());
self.regs.cr1.modify(|_, w| w.cstart().set_bit()); // Must be separate from SPE enable.
}
/// Enable an interrupt.
pub fn enable_interrupt(&mut self, interrupt_type: SpiInterrupt) {
self.regs.ier.modify(|_, w| match interrupt_type {
SpiInterrupt::NumberOfTransactionsReload => w.tserfie().set_bit(),
SpiInterrupt::ModeFault => w.modfie().set_bit(),
SpiInterrupt::Tifre => w.tifreie().set_bit(),
SpiInterrupt::CrcError => w.crceie().set_bit(),
SpiInterrupt::Overrun => w.ovrie().set_bit(),
SpiInterrupt::Underrun => w.udrie().set_bit(),
SpiInterrupt::Txtfie => w.txtfie().set_bit(),
SpiInterrupt::EotSuspTxc => w.eotie().set_bit(),
// SpiInterrupt::Dxp => w.dxpie().set_bit(),
// SpiInterrupt::Txp => w.txpie().set_bit(),
// SpiInterrupt::Rxp => w.rxpie().set_bit(),
_ => w.eotie().set_bit(), // todo: PAC ommission?
});
}
/// Clear an interrupt.
pub fn clear_interrupt(&mut self, interrupt_type: SpiInterrupt) {
self.regs.ifcr.write(|w| match interrupt_type {
SpiInterrupt::NumberOfTransactionsReload => w.tserfc().set_bit(),
SpiInterrupt::ModeFault => w.modfc().set_bit(),
SpiInterrupt::Tifre => w.tifrec().set_bit(),
SpiInterrupt::CrcError => w.crcec().set_bit(),
SpiInterrupt::Overrun => w.ovrc().set_bit(),
SpiInterrupt::Underrun => w.udrc().set_bit(),
SpiInterrupt::Txtfie => w.txtfc().set_bit(),
SpiInterrupt::EotSuspTxc => w.eotc().set_bit(),
// SpiInterrupt::Dxp => w.dxpc().set_bit(),
// SpiInterrupt::Txp => w.txpc().set_bit(),
// SpiInterrupt::Rxp => w.rxpc().set_bit(),
_ => w.eotc().set_bit(), // todo: PAC ommission?
});
}
}