1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
// todo: Between L5 and the rest, and L5 secure and non, there's a lot of DRY!
// todo: The answer may be macros.
use crate::pac::FLASH;
#[cfg(feature = "h7")]
use crate::pac::flash::BANK;
use core;
use cfg_if::cfg_if;
const FLASH_KEY1: u32 = 0x4567_0123;
const FLASH_KEY2: u32 = 0xCDEF_89AB;
// const FLASH_OPT_KEY1: u32 = 0x0819_2A3B;
// const FLASH_OPT_KEY2: u32 = 0x4C5D_6E7F;
#[derive(Clone, Copy, PartialEq)]
/// Set dual bank mode (DBANK option bit). Eg G4
pub enum DualBank {
Dual,
Single,
}
#[derive(Clone, Copy)]
#[repr(u8)]
/// For dual-bank variants. u8 value is used for page erase: sets `CR` reg, `BKER` bit.
pub enum Bank {
B1 = 0,
// todo: PAC bank 2 error
#[cfg(not(any(feature = "h747cm4", feature = "h747cm7")))]
B2 = 1,
}
#[derive(Copy, Clone, Debug)]
/// Possible error states for flash operations.
pub enum Error {
/// Flash controller is not done yet
Busy,
/// Error detected (by command execution, or because no command could be executed)
Illegal,
/// Set during read if ECC decoding logic detects correctable or uncorrectable error
EccError,
/// Page number is out of range
PageOutOfRange,
/// (Legal) command failed
Failure,
}
// todo: Bank 2 support on H7 and others.
#[cfg(not(feature = "h7"))]
/// Check and clear all non-secure error programming flags due to a previous
/// programming. If not, PGSERR is set.
fn clear_error_flags(regs: &FLASH) {
let sr = regs.sr.read();
cfg_if! {
if #[cfg(any(feature = "f3"))] {
if sr.wrprterr().bit_is_set() {
regs.sr.modify(|_, w| w.wrprterr().set_bit());
}
if sr.pgerr().bit_is_set() {
regs.sr.modify(|_, w| w.pgerr().set_bit());
}
} else if #[cfg(any(feature = "f4"))] {
// if sr.rderr().bit_is_set() {
// regs.sr.modify(|_, w| w.rderr().set_bit());
// }
if sr.pgserr().bit_is_set() {
regs.sr.modify(|_, w| w.pgserr().set_bit());
}
if sr.pgperr().bit_is_set() {
regs.sr.modify(|_, w| w.pgperr().set_bit());
}
if sr.pgaerr().bit_is_set() {
regs.sr.modify(|_, w| w.pgaerr().set_bit());
}
if sr.wrperr().bit_is_set() {
regs.sr.modify(|_, w| w.wrperr().set_bit());
}
if sr.operr().bit_is_set() {
regs.sr.modify(|_, w| w.operr().set_bit());
}
} else {
if sr.optverr().bit_is_set() {
regs.sr.write(|w| w.optverr().set_bit());
}
if sr.rderr().bit_is_set() {
regs.sr.write(|w| w.rderr().set_bit());
}
if sr.fasterr().bit_is_set() {
regs.sr.write(|w| w.fasterr().set_bit());
}
#[cfg(not(feature = "wl"))]
if sr.miserr().bit_is_set() {
regs.sr.write(|w| w.miserr().set_bit());
}
if sr.pgserr().bit_is_set() {
regs.sr.write(|w| w.pgserr().set_bit());
}
if sr.sizerr().bit_is_set() {
regs.sr.write(|w| w.sizerr().set_bit());
}
if sr.pgaerr().bit_is_set() {
regs.sr.write(|w| w.pgaerr().set_bit());
}
if sr.wrperr().bit_is_set() {
regs.sr.write(|w| w.wrperr().set_bit());
}
if sr.progerr().bit_is_set() {
regs.sr.write(|w| w.progerr().set_bit());
}
if sr.operr().bit_is_set() {
regs.sr.write(|w| w.operr().set_bit());
}
}
}
}
#[cfg(feature = "h7")]
/// Check and clear all non-secure error programming flags due to a previous
/// programming. If not, PGSERR is set.
fn clear_error_flags(regs: &BANK) {
let sr = regs.sr.read();
if sr.dbeccerr().bit_is_set() {
regs.ccr.write(|w| w.clr_dbeccerr().set_bit());
}
#[cfg(not(any(feature = "h747cm4", feature = "h747cm7")))]
if sr.sneccerr1().bit_is_set() {
regs.ccr.write(|w| w.clr_sneccerr().set_bit());
}
#[cfg(any(feature = "h747cm4", feature = "h747cm7"))]
if sr.sneccerr().bit_is_set() {
regs.ccr.write(|w| w.clr_sneccerr().set_bit());
}
if sr.rdserr().bit_is_set() {
regs.ccr.write(|w| w.clr_rdserr().set_bit());
}
if sr.rdperr().bit_is_set() {
regs.ccr.write(|w| w.clr_rdperr().set_bit());
}
if sr.operr().bit_is_set() {
regs.ccr.write(|w| w.clr_operr().set_bit());
}
if sr.incerr().bit_is_set() {
regs.ccr.write(|w| w.clr_incerr().set_bit());
}
if sr.strberr().bit_is_set() {
regs.ccr.write(|w| w.clr_strberr().set_bit());
}
if sr.pgserr().bit_is_set() {
regs.ccr.write(|w| w.clr_pgserr().set_bit());
}
if sr.wrperr().bit_is_set() {
regs.ccr.write(|w| w.clr_wrperr().set_bit());
}
}
pub struct Flash {
pub regs: FLASH,
#[cfg(any(feature = "g473", feature = "g474", feature = "g483", feature = "g484"))]
pub dual_bank: DualBank,
}
impl Flash {
/// Create a struct used to perform operations on Flash.
pub fn new(regs: FLASH) -> Self {
cfg_if! {
if #[cfg(any(feature = "g473", feature = "g474", feature = "g483", feature = "g484"))] {
// Some G4 variants let you select dual or single-bank mode.
Self { regs, dual_bank: DualBank::Single }
} else {
Self { regs}
}
}
}
/// Unlock the flash memory, allowing writes. See L4 Reference manual, section 3.3.5.
/// (G4 RM section 5.3.5)
/// "After reset, write is not allowed in the Flash control register (FLASH_CR) to protect the
/// Flash memory against possible unwanted operations due, for example, to electric
/// disturbances."
pub fn unlock(&mut self) -> Result<(), Error> {
#[cfg(not(feature = "h7"))]
let regs = &self.regs;
#[cfg(feature = "h7")]
let regs = self.regs.bank1();
if regs.cr.read().lock().bit_is_clear() {
return Ok(());
}
// The following sequence is used to unlock this register:
// 1. Write KEY1 = 0x45670123 in the Flash key register (FLASH_KEYR)
// 2. Write KEY2 = 0xCDEF89AB in the FLASH_KEYR register.
regs.keyr.write(|w| unsafe { w.bits(FLASH_KEY1) });
regs.keyr.write(|w| unsafe { w.bits(FLASH_KEY2) });
if regs.cr.read().lock().bit_is_clear() {
Ok(())
} else {
Err(Error::Failure)
}
}
// /// Unlock the FLASH_OPTCR register, for writing option bits.
// pub fn unlock_options(&mut self) -> Result<(), Error> {
// #[cfg(not(feature = "h7"))]
// let regs = &self.regs;
// #[cfg(feature = "h7")]
// let regs = self.regs.bank1();
//
// if regs.cr.read().lock().bit_is_clear() {
// return Ok(());
// }
//
// regs.optkeyr.write(|w| unsafe { w.bits(FLASH_OPT_KEY1) });
// regs.optkeyr.write(|w| unsafe { w.bits(FLASH_OPT_KEY2) });
//
// if regs.cr.read().lock().bit_is_clear() {
// Ok(())
// } else {
// Err(Error::Failure)
// }
// }
pub fn lock(&mut self) {
// The FLASH_CR register cannot be written when the BSY bit in the Flash status register
// (FLASH_SR) is set. Any attempt to write to it with the BSY bit set causes the AHB bus to
// stall until the BSY bit is cleared.
// todo: bank
#[cfg(not(feature = "h7"))]
let regs = &self.regs;
#[cfg(feature = "h7")]
let regs = &self.regs.bank1();
while regs.sr.read().bsy().bit_is_set() {}
regs.cr.modify(|_, w| w.lock().set_bit());
}
#[cfg(not(feature = "h7"))]
#[allow(unused_variables)] // bank arg on single-bank MCUs.
/// Erase an entire page. See L4 Reference manual, section 3.3.5.
/// For why this is required, reference L4 RM, section 3.3.7:
/// "Programming in a previously programmed address is not allowed except if the data to write
/// is full zero, and any attempt will set PROGERR flag in the Flash status register
/// (FLASH_SR)."
pub fn erase_page(&mut self, bank: Bank, page: usize) -> Result<(), Error> {
self.unlock()?;
let regs = &self.regs;
// 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the Flash
// status register (FLASH_SR).
if regs.sr.read().bsy().bit_is_set() {
self.lock();
return Err(Error::Busy);
}
// 2. Check and clear all error programming flags due to a previous programming. If not,
// PGSERR is set.
clear_error_flags(regs);
// 3. Set the PER bit and select the page you wish to erase (PNB). For dual bank variants:
// - with the associated bank(BKER) in the Flash control register (FLASH_CR).
cfg_if! {
if #[cfg(feature = "f3")] {
// F3 RM: "Erase procedure"
// Set the PER bit in the FLASH_CR register
regs.cr.modify(|_, w| w.per().set_bit());
// Program the FLASH_CR register
// regs.ar.modify(|_, w| w.far().bits(page as u8));
regs.ar.write(|w| unsafe { w.bits(page as u32) }); // todo: Is this right?
} else if #[cfg(feature = "f4")] {
// Set the SER bit and select the sector out of the 12 sectors (for STM32F405xx/07xx and
// STM32F415xx/17xx) and out of 24 (for STM32F42xxx and STM32F43xxx) in the main
// memory block you wish to erase (SNB) in the FLASH_CR register
regs.cr.modify(|_, w| unsafe {
w.ser().set_bit();
w.snb().bits(page as u8) // todo: Probably not right?
});
} else if #[cfg(any(feature = "g473", feature = "g474", feature = "g483", feature = "g484"))] {
// 3. (G4 dual-bank devices: In dual bank mode (DBANK option bit is set), set the PER bit and
// select the page to
// erase (PNB) with the associated bank (BKER) in the Flash control register
// (FLASH_CR). In single bank mode (DBANK option bit is reset), set the PER bit and
// select the page to erase (PNB). The BKER bit in the Flash control register
// (FLASH_CR) must be kept cleared)
if self.dual_bank == DualBank::Dual {
regs.cr.modify(|_, w| unsafe {
// w.bker().bits(bank as u8); // todo: PAC error
w.pnb().bits(page as u8);
w.per().set_bit()
});
} else {
regs.cr.modify(|_, w| unsafe {
w.pnb().bits(page as u8);
w.per().set_bit()
});
}
} else {
regs.cr.modify(|_, w| unsafe {
w.pnb().bits(page as u8);
w.per().set_bit()
});
}
}
// 4. Set the STRT bit in the FLASH_CR register.
cfg_if! {
if #[cfg(not(any(feature = "l4", feature = "h7")))] {
regs.cr.modify(|_, w| w.strt().set_bit());
} else {
regs.cr.modify(|_, w| w.start().set_bit());
}
}
// 5. Wait for the BSY bit to be cleared in the FLASH_SR register.
while regs.sr.read().bsy().bit_is_set() {}
cfg_if! {
if #[cfg(any(feature = "f3", feature = "f4"))] {
// Check the EOP flag in the FLASH_SR register (it is set when the erase operation has
// succeeded), and then clear it by software.
while regs.sr.read().eop().bit_is_clear() {}
regs.sr.modify(|_, w| w.eop().set_bit());
}
}
#[cfg(not(feature = "f4"))]
regs.cr.modify(|_, w| w.per().clear_bit());
#[cfg(feature = "f4")]
regs.cr.modify(|_, w| w.ser().clear_bit());
self.lock();
Ok(())
}
#[cfg(feature = "h7")]
/// Erase a 128kb sector. See H743 RM, section 4.3.10: FLASH erase operations; subsection
/// Flash sector erase sequence. Note that this is similar to the procedure for other
/// families, but has a different name "sector" vice "page", and the RM instructions
/// are phrased differently.
pub fn erase_sector(&mut self, bank: Bank, sector: usize) -> Result<(), Error> {
self.unlock()?;
let regs = &match bank {
Bank::B1 => self.regs.bank1(),
// todo: PAC bank 2 error
#[cfg(not(any(feature = "h747cm4", feature = "h747cm7")))]
Bank::B2 => self.regs.bank2(),
};
// To erase a 128-Kbyte user sector, proceed as follows:
// 1. Check and clear (optional) all the error flags due to previous programming/erase
// operation. Refer to Section 4.7: FLASH error management for details.
clear_error_flags(®s);
// 2.Unlock the FLASH_CR1/2 register, as described in Section 4.5.1: FLASH configuration
// protection (only if register is not already unlocked).
// self.unlock()?; // (Above; out of order due to borrow-checker issue)
// 3. Set the SER1/2 bit and SNB1/2 bitfield in the corresponding FLASH_CR1/2 register.
// SER1/2 indicates a sector erase operation, while SNB1/2 contains the target sector
// number.
regs.cr.modify(|_, w| unsafe {
w.ser().set_bit();
w.snb().bits(sector as u8) // todo: Probably not right?
});
// 4. Set the START1/2 bit in the FLASH_CR1/2 register.
regs.cr.modify(|_, w| w.start().set_bit());
// 5. Wait for the QW1/2 bit to be cleared in the corresponding FLASH_SR1/2 register.
while regs.sr.read().qw().bit_is_set() {}
self.lock();
Ok(())
}
/// Erase one or both banks. Called "Mass erase" on single-bank variants like G4.
pub fn erase_bank(&mut self, bank: Bank) -> Result<(), Error> {
// todo: DRY
// (H7): 2. Unlock the FLASH_CR1/2 register, as described in Section 4.5.1: FLASH configuration
// protection (only if register is not already unlocked).
self.unlock()?;
#[cfg(not(feature = "h7"))]
let regs = &self.regs;
#[cfg(feature = "h7")]
let regs = &match bank {
Bank::B1 => self.regs.bank1(),
// todo: PAC bank 2 error
#[cfg(not(any(feature = "h747cm4", feature = "h747cm7")))]
Bank::B2 => self.regs.bank2(),
};
// To perform a bank Mass Erase, follow the procedure below:
// RM0351 Rev 7 105/1903
// RM0351 Embedded Flash memory (FLASH)
// 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
// FLASH_SR register.
// (H7): 1. Check and clear (optional) all the error flags due to previous programming/erase
// operation. Refer to Section 4.7: FLASH error management for details.
let sr = regs.sr.read();
if sr.bsy().bit_is_set() {
self.lock();
return Err(Error::Busy);
}
// 2. Check and clear all error programming flags due to a previous programming. If not,
// PGSERR is set.
clear_error_flags(regs);
// 3. Set the MER1 bit or/and MER2 (depending on the bank) in the Flash control register
// (FLASH_CR). Both banks can be selected in the same operation.
cfg_if! {
if #[cfg(any(feature = "f3", feature = "f4", feature = "g0", feature = "wb", feature = "wl"))] {
regs.cr.modify(|_, w| w.mer().set_bit());
} else if #[cfg(feature = "h7")] {
// 3. Set the BER1/2 bit in the FLASH_CR1/2 register corresponding to the targeted bank.
regs.cr.modify(|_, w| w.ber().set_bit());
} else { // L4, G4
match bank {
Bank::B1 => {
regs.cr.modify(|_, w| w.mer1().set_bit());
}
Bank::B2 => {
// todo: Other families that have dual bank too!
// #[cfg(any(feature = "g473", feature = "g474", feature = "g483", feature = "g484"))]
// regs.cr.modify(|_, w| w.mer2().set_bit()); // todo PAC error
}
}
}
}
// 4. Set the STRT bit in the FLASH_CR register.
cfg_if! {
if #[cfg(feature = "h7")] {
// 4. Set the START bit in the FLASH_CR1/2 register to start the bank erase operation. Then
// wait until the QW1/2 bit is cleared in the corresponding FLASH_SR1/2 register.
regs.cr.modify(|_, w| w.start().set_bit());
while regs.sr.read().qw().bit_is_set() {}
} else if #[cfg(feature = "l4")] {
regs.cr.modify( | _, w | w.start().set_bit());
} else {
regs.cr.modify(|_, w| w.strt().set_bit());
}
}
// 5. Wait for the BSY bit to be cleared in the FLASH_SR register.
while regs.sr.read().bsy().bit_is_set() {}
// (Some RMs describe this procedure, to clear mer, with ambiguity of if it's required)
cfg_if! {
if #[cfg(feature = "h7")] {
regs.cr.modify(|_, w| w.ber().clear_bit());
} else if #[cfg(any(feature = "l4", feature = "g4"))] {
regs.cr.modify(|_, w| w.mer1().clear_bit());
} else {
regs.cr.modify(|_, w| w.mer().clear_bit());
}
}
self.lock();
Ok(())
}
// todo: For multibank variants, accept a bank argument.
/// Write the contents of a page. Must be erased first. See L4 RM, section 3.3.7.
/// Make sure the page is one your MCU has, and isn't being used for the program itself.
#[cfg(not(feature = "h7"))]
#[allow(unused_variables)] // bank arg on single-bank MCUs.
pub fn write_page(&mut self, bank: Bank, page: usize, data: &[u8]) -> Result<(), Error> {
// todo: Consider a u8-based approach.
// todo: DRY from `erase_page`.
self.unlock()?;
let regs = &self.regs;
// The Flash memory programming sequence in standard mode is as follows:
// 1. Check that no Flash main memory operation is ongoing by checking the BSY bit in the
// Flash status register (FLASH_SR).
let sr = regs.sr.read();
if sr.bsy().bit_is_set() {
self.lock();
return Err(Error::Busy);
}
// 2. Check and clear all error programming flags due to a previous programming. If not,
// PGSERR is set.
clear_error_flags(regs);
// 3. Set the PG bit in the Flash control register (FLASH_CR).
regs.cr.modify(|_, w| w.pg().set_bit());
// 4. Perform the data write operation at the desired memory address, inside main memory
// block or OTP area. Only double word can be programmed.
cfg_if! {
if #[cfg(any(feature = "g473", feature = "g474", feature = "g483", feature = "g484"))] {
let mut address = page_to_address(self.dual_bank, bank, page) as *mut u32;
} else {
let mut address = page_to_address(page) as *mut u32;
}
}
// Map our 8-bit data input API to the 64-bit write API. (Used by all variants, even though
// they have different read sizes.)
// "The Flash memory is programmed 72 bits at a time (64 bits + 8 bits ECC)."
for chunk in data.chunks_exact(8) {
let word1 = u32::from_le_bytes(chunk[0..4].try_into().unwrap());
let word2 = u32::from_le_bytes(chunk[4..8].try_into().unwrap());
unsafe {
// Write a first word in an address aligned with double wor
core::ptr::write_volatile(address, word1);
address = address.add(1);
// Write the second word
core::ptr::write_volatile(address, word2);
address = address.add(1);
}
// 5. Wait until the BSY bit is cleared in the FLASH_SR register.
while regs.sr.read().bsy().bit_is_set() {}
// 6. Check that EOP flag is set in the FLASH_SR register (meaning that the programming
// operation has succeed), and clear it by software.
if regs.sr.read().eop().bit_is_set() {
regs.sr.modify(|_, w| w.eop().set_bit()); // Clear
}
}
// 7. Clear the PG bit in the FLASH_CR register if there no more programming request
// anymore.
regs.cr.modify(|_, w| w.pg().clear_bit());
self.lock();
Ok(())
}
/// Write the contents of a sector. Must be erased first. See H742 or H723-35 RM, section 4.3.9.
/// Make sure the sector is one your MCU has, and isn't being used for the program itself. Writes
/// a byte array, 256 bits at a time.
#[cfg(feature = "h7")]
pub fn write_sector(&mut self, bank: Bank, sector: usize, data: &[u8]) -> Result<(), Error> {
// 1. Unlock the FLASH_CR1/2 register, as described in Section 4.5.1: FLASH configuration
// protection (only if register is not already unlocked).
self.unlock()?;
let regs = &self.regs.bank1(); // todo: Bank 2 support!
// 2. Enable write operations by setting the PG1/2 bit in the FLASH_CR1/2 register.
regs.cr.modify(|_, w| w.pg().set_bit());
// 3. Check the protection of the targeted memory area. (todo?)
// 4. Write one Flash-word corresponding to 32-byte data starting at a 32-byte aligned
// address.
let mut address = sector_to_address(bank, sector) as *mut u32;
// Note that the key element separating each 256-bit writes is wating until the `qw` bit
// is cleared.
for chunk in data.chunks_exact(32) {
// We use 8 pointer-sized (32-bit) words to meet our full 32-byte (256-bit) write.
for i in 0..8 {
let word = u32::from_le_bytes(chunk[i * 4..i * 4 + 4].try_into().unwrap());
unsafe {
core::ptr::write_volatile(address, word);
address = address.add(1);
}
}
// 5. Check that QW has been raised and wait until it is reset to 0.
while regs.sr.read().qw().bit_is_set() {}
}
self.lock();
Ok(())
}
/// Erase a page, then write to it.
#[cfg(not(feature = "h7"))]
pub fn erase_write_page(&mut self, bank: Bank, page: usize, data: &[u8]) -> Result<(), Error> {
self.erase_page(bank, page)?;
self.write_page(bank, page, data)?;
Ok(())
}
/// Erase a page, then write to it.
/// Make sure the sector is one your MCU has, and isn't being used for the program itself.
#[cfg(feature = "h7")]
pub fn erase_write_sector(
&mut self,
bank: Bank,
page: usize,
data: &[u8],
) -> Result<(), Error> {
self.erase_sector(bank, page)?;
self.write_sector(bank, page, data)?;
Ok(())
}
/// Read flash memory at a given page and offset into an 8-bit-dword buffer.
#[allow(unused_variables)] // bank arg on single-bank MCUs.
pub fn read(&self, bank: Bank, page: usize, offset: usize, buf: &mut [u8]) {
// H742 RM, section 4.3.8:
// Single read sequence
// The recommended simple read sequence is the following:
// 1. Freely perform read accesses to any AXI-mapped area.
// 2. The embedded Flash memory effectively executes the read operation from the read
// command queue buffer as soon as the non-volatile memory is ready and the previously
// requested operations on this specific bank have been served.
cfg_if! {
if #[cfg(any(
feature = "g473",
feature = "g474",
feature = "g483",
feature = "g484",
))] {
let mut addr = page_to_address(self.dual_bank, bank, page) as *mut u32;
} else if #[cfg(feature = "h7")]{
let mut addr = sector_to_address(bank, page) as *mut u32;
} else {
let mut addr = page_to_address(page) as *mut u32;
}
}
unsafe {
// Offset it by the start position
addr = unsafe { addr.add(offset) };
// Iterate on chunks of 32bits
for chunk in buf.chunks_exact_mut(4) {
let word = unsafe { core::ptr::read_volatile(addr) };
chunk[0..4].copy_from_slice(&word.to_le_bytes());
unsafe { addr = addr.add(1) };
}
}
}
}
/// Calculate the address of the start of a given page. Each page is 2,048 Kb for non-H7.
/// For H7, sectors are 128Kb, with 8 sectors per bank.
#[cfg(not(any(
feature = "g473",
feature = "g474",
feature = "g483",
feature = "g484",
feature = "h7"
)))]
fn page_to_address(page: usize) -> usize {
super::BANK1_START_ADDR + page * super::PAGE_SIZE
}
#[cfg(any(feature = "g473", feature = "g474", feature = "g483", feature = "g484"))]
fn page_to_address(dual_bank: DualBank, bank: Bank, page: usize) -> usize {
if dual_bank == DualBank::Single {
super::BANK1_START_ADDR + page * super::PAGE_SIZE_SINGLE_BANK
} else {
match bank {
Bank::B1 => super::BANK1_START_ADDR + page * super::PAGE_SIZE_DUAL_BANK,
Bank::B2 => super::BANK2_START_ADDR + page * super::PAGE_SIZE_DUAL_BANK,
}
}
}
#[cfg(feature = "h7")]
/// Calculate the address of the start of a given page. Each page is 2,048 Kb for non-H7.
/// For H7, sectors are 128Kb, with 8 sectors per bank.
fn sector_to_address(bank: Bank, sector: usize) -> usize {
// Note; Named sector on H7.
let starting_pt = match bank {
Bank::B1 => super::BANK1_START_ADDR,
// todo: This isn't the same bank2 starting point for all H7 variants!
#[cfg(not(any(feature = "h747cm4", feature = "h747cm7")))]
Bank::B2 => super::BANK2_START_ADDR,
};
starting_pt + sector * super::SECTOR_SIZE
}