pub struct R(_);
Expand description

Register ISR reader

Implementations

Bit 0 - Transmit data register empty (transmitters) This bit is set by hardware when the I2C_TXDR register is empty. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to 1 by software in order to flush the transmit data register I2C_TXDR. Note: This bit is set by hardware when PE=0.

Bit 1 - Transmit interrupt status (transmitters) This bit is set by hardware when the I2C_TXDR register is empty and the data to be transmitted must be written in the I2C_TXDR register. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to 1 by software when NOSTRETCH=1 only, in order to generate a TXIS event (interrupt if TXIE=1 or DMA request if TXDMAEN=1). Note: This bit is cleared by hardware when PE=0.

Bit 2 - Receive data register not empty (receivers) This bit is set by hardware when the received data is copied into the I2C_RXDR register, and is ready to be read. It is cleared when I2C_RXDR is read. Note: This bit is cleared by hardware when PE=0.

Bit 3 - Address matched (slave mode) This bit is set by hardware as soon as the received slave address matched with one of the enabled slave addresses. It is cleared by software by setting ADDRCF bit. Note: This bit is cleared by hardware when PE=0.

Bit 4 - Not Acknowledge received flag This flag is set by hardware when a NACK is received after a byte transmission. It is cleared by software by setting the NACKCF bit. Note: This bit is cleared by hardware when PE=0.

Bit 5 - Stop detection flag This flag is set by hardware when a Stop condition is detected on the bus and the peripheral is involved in this transfer: either as a master, provided that the STOP condition is generated by the peripheral. or as a slave, provided that the peripheral has been addressed previously during this transfer. It is cleared by software by setting the STOPCF bit. Note: This bit is cleared by hardware when PE=0.

Bit 6 - Transfer Complete (master mode) This flag is set by hardware when RELOAD=0, AUTOEND=0 and NBYTES data have been transferred. It is cleared by software when START bit or STOP bit is set. Note: This bit is cleared by hardware when PE=0.

Bit 7 - Transfer Complete Reload This flag is set by hardware when RELOAD=1 and NBYTES data have been transferred. It is cleared by software when NBYTES is written to a non-zero value. Note: This bit is cleared by hardware when PE=0. This flag is only for master mode, or for slave mode when the SBC bit is set.

Bit 8 - Bus error This flag is set by hardware when a misplaced Start or Stop condition is detected whereas the peripheral is involved in the transfer. The flag is not set during the address phase in slave mode. It is cleared by software by setting BERRCF bit. Note: This bit is cleared by hardware when PE=0.

Bit 9 - Arbitration lost This flag is set by hardware in case of arbitration loss. It is cleared by software by setting the ARLOCF bit. Note: This bit is cleared by hardware when PE=0.

Bit 10 - Overrun/Underrun (slave mode) This flag is set by hardware in slave mode with NOSTRETCH=1, when an overrun/underrun error occurs. It is cleared by software by setting the OVRCF bit. Note: This bit is cleared by hardware when PE=0.

Bit 11 - PEC Error in reception This flag is set by hardware when the received PEC does not match with the PEC register content. A NACK is automatically sent after the wrong PEC reception. It is cleared by software by setting the PECCF bit. Note: This bit is cleared by hardware when PE=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to 0. Please refer to Section25.3: I2C implementation.

Bit 12 - Timeout or tLOW detection flag This flag is set by hardware when a timeout or extended clock timeout occurred. It is cleared by software by setting the TIMEOUTCF bit. Note: This bit is cleared by hardware when PE=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to 0. Please refer to Section25.3: I2C implementation.

Bit 13 - SMBus alert This flag is set by hardware when SMBHEN=1 (SMBus host configuration), ALERTEN=1 and a SMBALERT event (falling edge) is detected on SMBA pin. It is cleared by software by setting the ALERTCF bit. Note: This bit is cleared by hardware when PE=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to 0. Please refer to Section25.3: I2C implementation.

Bit 15 - Bus busy This flag indicates that a communication is in progress on the bus. It is set by hardware when a START condition is detected. It is cleared by hardware when a Stop condition is detected, or when PE=0.

Bit 16 - Transfer direction (Slave mode) This flag is updated when an address match event occurs (ADDR=1).

Bits 17:23 - Address match code (Slave mode) These bits are updated with the received address when an address match event occurs (ADDR = 1). In the case of a 10-bit address, ADDCODE provides the 10-bit header followed by the 2 MSBs of the address.

Methods from Deref<Target = R<ISR_SPEC>>

Reads raw bits from register.

Trait Implementations

The resulting type after dereferencing.
Dereferences the value.
Converts to this type from the input type.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.