1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
//! Timers. Includes initialization, countdown functionality, interrupts, and PWM features. use num_traits::float::Float; use embedded_hal::timer::{CountDown, Periodic}; use void::Void; use crate::{ pac::{self, RCC}, rcc_en_reset, traits::ClockCfg, }; use cfg_if::cfg_if; use paste::paste; // todo: Low power timer enabling etc. eg on L4, RCC_APB1ENR1.LPTIM1EN #[derive(Clone, Copy)] /// Used for when attempting to set a timer period that is out of range. pub struct ValueError {} /// Hardware timers pub struct Timer<TIM> { clock_speed: u32, // Associated timer clock speed in Hz. tim: TIM, // Register block for the specific timer. } /// Interrupt events pub enum Event { /// Timer timed out / count down ended TimeOut, } /// Output alignment #[derive(Clone, Copy)] pub enum Alignment { Edge, Center1, Center2, Center3, } // todo: TimerChannel, to avoid input conflicts? /// Timer channel #[derive(Clone, Copy)] pub enum Channel { One, Two, Three, Four, } /// Timer count direction #[repr(u8)] #[derive(Clone, Copy)] pub enum CountDir { Up = 0, Down = 1, } /// Capture/Compare selection. /// This bit-field defines the direction of the channel (input/output) as well as the used input. #[repr(u8)] #[derive(Clone, Copy)] pub enum CaptureCompare { Output = 0b00, InputTi1 = 0b01, InputTi2 = 0b10, InputTrc = 0b11, } /// Capture/Compare output polarity. Defaults to `ActiveHigh` in hardware. #[derive(Clone, Copy)] pub enum Polarity { ActiveHigh, ActiveLow, } impl Polarity { /// For use with `set_bit()`. fn bit(&self) -> bool { match self { Self::ActiveHigh => false, Self::ActiveLow => true, } } } #[derive(Clone, Copy)] #[repr(u8)] /// See F303 ref man, section 21.4.7. /// These bits define the behavior of the output reference signal OC1REF from which OC1 and /// OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends /// on CC1P and CC1NP bits. /// 0000: Frozen - The comparison between the output compare register TIMx_CCR1 and the /// counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing /// base). /// 0001: Set channel 1 to active level on match. OC1REF signal is forced high when the /// counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). /// 0010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the /// counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). /// 0011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1. /// 0100: Force inactive level - OC1REF is forced low. /// 0101: Force active level - OC1REF is forced high. /// 0110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1 /// else inactive. In downcounting, channel 1 is inactive (OC1REF=‘0) as long as /// TIMx_CNT>TIMx_CCR1 else active (OC1REF=1). /// 0111: PWM mode 2 - In upcounting, channel 1 is inactive as long as /// TIMx_CNT<TIMx_CCR1 else active. In downcounting, channel 1 is active as long as /// TIMx_CNT>TIMx_CCR1 else inactive. /// 1000: Retriggerable OPM mode 1 - In up-counting mode, the channel is active until a trigger /// event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 /// and the channels becomes inactive again at the next update. In down-counting mode, the /// channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is /// performed as in PWM mode 1 and the channels becomes inactive again at the next update. /// 1001: Retriggerable OPM mode 2 - In up-counting mode, the channel is inactive until a /// trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM /// mode 2 and the channels becomes inactive again at the next update. In down-counting /// mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a /// comparison is performed as in PWM mode 1 and the channels becomes active again at the /// next update. /// 1010: Reserved, /// 1011: Reserved, /// 1100: Combined PWM mode 1 - OC1REF has the same behavior as in PWM mode 1. /// OC1REFC is the logical OR between OC1REF and OC2REF. /// 1101: Combined PWM mode 2 - OC1REF has the same behavior as in PWM mode 2. /// OC1REFC is the logical AND between OC1REF and OC2REF. /// 1110: Asymmetric PWM mode 1 - OC1REF has the same behavior as in PWM mode 1. /// OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting /// down. /// 1111: Asymmetric PWM mode 2 - OC1REF has the same behavior as in PWM mode 2. /// OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting /// down pub enum OutputCompare { // In our current implementation, the left bit here is ignored due to how // the `ocxm` fields are split between left most, and right three bits. // see `left_fit()` method below. Frozen = 0b0000, Active = 0b0001, Inactive = 0b0010, ForceInactive = 0b0100, ForceActive = 0b0101, Pwm1 = 0b0110, Pwm2 = 0b0111, RetriggerableOpmMode1 = 0b1000, RetriggerableOpmMode2 = 0b1001, CombinedPwm1 = 0b1100, CombinedPwm2 = 0b1101, AsymmetricPwm1 = 0b1110, AsymmetricPwm2 = 0b1111, } impl OutputCompare { /// A workaround due to the `ccmrx_output.ocym` fields being split into /// the left most, and first 3. /// Get the left bit, as a boolean. For the right three, we just /// parse the variant as a u8, and the left bit is ignored when setting /// in the 3-bit field. pub fn left_bit(&self) -> bool { matches!( self, Self::RetriggerableOpmMode1 | Self::RetriggerableOpmMode2 | Self::CombinedPwm1 | Self::CombinedPwm2 | Self::AsymmetricPwm1 | Self::AsymmetricPwm2 ) } } macro_rules! hal { ($TIMX:ident, $tim:ident, $apb:expr) => { impl Periodic for Timer<pac::$TIMX> {} impl CountDown for Timer<pac::$TIMX> { type Time = f32; fn start<T>(&mut self, timeout: T) where T: Into<f32>, // Hz. { self.disable(); self.set_freq(timeout.into()).ok(); // Trigger an update event to load the prescaler value to the clock // NOTE(write): uses all bits in this register. self.tim.egr.write(|w| w.ug().set_bit()); // The above line raises an update event which will indicate // that the timer is already finished. Since this is not the case, // it should be cleared self.clear_update_interrupt_flag(); // start counter self.enable(); } fn wait(&mut self) -> nb::Result<(), Void> { if self.tim.sr.read().uif().bit_is_clear() { Err(nb::Error::WouldBlock) } else { self.clear_update_interrupt_flag(); Ok(()) } } } impl Timer<pac::$TIMX> { paste! { /// Configures a TIM peripheral as a periodic count down timer pub fn [<new_ $tim>]<T:, C>(tim: pac::$TIMX, freq: T, clocks: &C, rcc: &mut RCC) -> Self where T: Into<f32>, C: ClockCfg, { // `freq` is in Hz. rcc_en_reset!($apb, $tim, rcc); let clock_speed = match $apb { 1 => clocks.apb1_timer(), _ => clocks.apb2_timer(), }; let mut timer = Timer { clock_speed, tim }; timer.start(freq); timer } } /// Starts listening for an `event`. Used to enable interrupts. /// Starts listening for an `event`. Used to enable interrupts. pub fn listen(&mut self, event: Event) { match event { // Enable update event interrupt Event::TimeOut => self.tim.dier.write(|w| w.uie().set_bit()), } } /// Enable the timer. pub fn enable(&mut self) { self.tim.cr1.modify(|_, w| w.cen().set_bit()); } /// Disable the timer. pub fn disable(&mut self) { self.tim.cr1.modify(|_, w| w.cen().clear_bit()); } /// Check if the timer is enabled. pub fn is_enabled(&self) -> bool { self.tim.cr1.read().cen().bit_is_set() } /// Clears interrupt associated with this timer. /// /// If the interrupt is not cleared, it will immediately retrigger after /// the ISR has finished. For examlpe, place this at the top of your timer's /// interrupt handler. pub fn clear_interrupt(&mut self) { self.tim.sr.write(|w| w.uif().clear_bit()); } /// Stops listening for an `xcevent`. Used to disable interrupts. pub fn unlisten(&mut self, event: Event) { match event { // Disable update event interrupt Event::TimeOut => self.tim.dier.write(|w| w.uie().clear_bit()), } } /// Clears Update Interrupt Flag pub fn clear_update_interrupt_flag(&mut self) { self.tim.sr.modify(|_, w| w.uif().clear_bit()); } /// Releases the TIM peripheral pub fn free(mut self) -> pac::$TIMX { self.disable(); self.tim } /// Set the timer frequency, in Hz. Overrides the period or frequency set /// in the constructor. If you use `center` aligned PWM, make sure to /// enter twice the freq you normally would. pub fn set_freq(&mut self, freq: f32) -> Result<(), ValueError> { // todo: Take into account settings like Center alignment, and // todo the `tim1sw` bit in RCC CFGR3, which change how the // todo freq behaves. Center alignment halves the frequency; // todo: Double `freq` here to compensate. let (psc, arr) = calc_freq_vals(freq, self.clock_speed)?; self.tim.arr.write(|w| unsafe { w.bits(arr.into()) }); self.tim.psc.write(|w| unsafe { w.bits(psc.into()) }); Ok(()) } /// Set the auto-reload register value. Used for adjusting frequency. pub fn set_auto_reload(&mut self, arr: u32) { // todo: Could be u16 or u32 depending on timer resolution, // todo but this works for now. self.tim.arr.write(|w| unsafe { w.bits(arr.into()) }); } /// Set the prescaler value. Used for adjusting frequency. pub fn set_prescaler(&mut self, psc: u16) { self.tim.psc.write(|w| unsafe { w.bits(psc.into()) }); } /// Reset the countdown; set the counter to 0. pub fn reset_countdown(&mut self) { self.tim.cnt.write(|w| unsafe { w.bits(0) }); } } } } /// Calculate values required to set the timer frequency: `PSC` and `ARR`. This can be /// used for initial timer setup, or changing the value later. fn calc_freq_vals(freq: f32, clock_speed: u32) -> Result<(u16, u16), ValueError> { // `period` and `clock_speed` are both in Hz. // PSC and ARR range: 0 to 65535 // (PSC+1)*(ARR+1) = TIMclk/Updatefrequency = TIMclk * period // APB1 (pclk1) is used by Tim2, 3, 4, 6, 7. // APB2 (pclk2) is used by Tim8, 15-20 etc. // We need to factor the right-hand-side of the above equation (`rhs` variable) // into integers. There are likely clever algorithms available to do this. // Some examples: https://cp-algorithms.com/algebra/factorization.html // We've chosen something quick to write, and with sloppy precision; // should be good enough for most cases. // - If you work with pure floats, there are an infinite number of solutions: Ie for any value of PSC, you can find an ARR to solve the equation. // - The actual values are integers that must be between 0 and 65_536 // - Different combinations will result in different amounts of rounding errors. Ideally, we pick the one with the lowest rounding error. // - The aboveapproach sets PSC and ARR always equal to each other. // This results in concise code, is computationally easy, and doesn't limit // the maximum period. There will usually be solutions that have a smaller rounding error. let max_val = 65_535; let rhs = clock_speed as f32 / freq; let arr = rhs.sqrt().round() as u16 - 1; let psc = arr; if arr > max_val || psc > max_val { return Err(ValueError {}); } Ok((psc, arr)) } macro_rules! pwm_features { ($TIMX:ident, $res:ident) => { impl Timer<pac::$TIMX> { /// Enables basic PWM output pub fn enable_pwm_output( &mut self, channel: Channel, compare: OutputCompare, dir: CountDir, duty: f32, ) { self.set_preload(channel, true); self.set_output_compare(channel, compare); self.set_duty(channel, (self.get_max_duty() as f32 * duty) as $res); self.tim.cr1.modify(|_, w| w.dir().bit(dir as u8 != 0)); self.enable_capture_compare(channel); } /// Enables basic PWM input. TODO: Doesn't work yet. /// L4 RM, section 26.3.8 pub fn enable_pwm_input( &mut self, channel: Channel, compare: OutputCompare, dir: CountDir, duty: f32, ) { // todo: These instruction sare specifically for TI1 // 1. Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1 // register (TI1 selected). // self.tim.ccmr1.modify(|_, w| w.cc1s().bit(0b01)); // 2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter // clear): write the CC1P and CC1NP bits to ‘0’ (active on rising edge). // self.tim.ccmr1.modify(|_, w| { // w.cc1p().bits(0b00); // w.cc1np().bits(0b00) // }); // 3. Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1 // register (TI1 selected). // self.tim.ccmr2.modify(|_, w| w.cc2s().bit(0b10)); // 4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P // and CC2NP bits to CC2P/CC2NP=’10’ (active on falling edge). // self.tim.ccr2.modify(|_, w| { // w.cc2p().bits(0b10); // w.cc2np().bits(0b10) // }); // 5. Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register // (TI1FP1 selected). // self.tim.smcr.modify(|_, w| w.ts().bits(0b101)); // 6. Configure the slave mode controller in reset mode: write the SMS bits to 0100 in the // TIMx_SMCR register. // self.tim.smcr.modify(|_, w| w.sms().bits(0b0100)); // 7. Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register. // self.tim.ccer.modify(|_, w| { // w.cc1e().set_bit(); // w.cc2e().set_bit() // }); } // todo: more advanced PWM modes. Asymmetric, combined, center-aligned etc. /// Set Output Compare Mode. See docs on the `OutputCompare` enum. pub fn set_output_compare(&mut self, channel: Channel, mode: OutputCompare) { match channel { Channel::One => { self.tim .ccmr1_output() .modify(|_, w| unsafe { w.oc1m().bits(mode as u8) }); // todo: Confirm other platforms handle everything using `oc1m`, and don't // todo need the `oc1m_3` equiv. L5 and 4? #[cfg(any(feature = "f302", feature = "f303"))] self.tim .ccmr1_output() .modify(|_, w| w.oc1m_3().bit(mode.left_bit())); } Channel::Two => { self.tim .ccmr1_output() .modify(|_, w| unsafe { w.oc1m().bits(mode as u8) }); #[cfg(any(feature = "f302", feature = "f303"))] // todo see note above self.tim .ccmr1_output() .modify(|_, w| w.oc1m_3().bit(mode.left_bit())); } Channel::Three => { self.tim .ccmr1_output() .modify(|_, w| unsafe { w.oc1m().bits(mode as u8) }); #[cfg(any(feature = "f302", feature = "f303"))] // todo see note above self.tim .ccmr1_output() .modify(|_, w| w.oc1m_3().bit(mode.left_bit())); } Channel::Four => { self.tim .ccmr2_output() .modify(|_, w| unsafe { w.oc4m().bits(mode as u8) }); #[cfg(any(feature = "f302", feature = "f303"))] // todo see note above self.tim .ccmr2_output() .modify(|_, w| w.oc4m_3().bit(mode.left_bit())); } } } /// Return the set duty period for a given channel. Divide by `get_max_duty()` /// to find the portion of the duty cycle used. pub fn get_duty(&self, channel: Channel) -> $res { cfg_if! { if #[cfg(feature = "g0")] { match channel { Channel::One => self.tim.ccr1.read().bits(), Channel::Two => self.tim.ccr2.read().bits(), Channel::Three => self.tim.ccr3.read().bits(), Channel::Four => self.tim.ccr4.read().bits(), } } else if #[cfg(feature = "g4")] { match channel { Channel::One => self.tim.ccr1.read().ccr1().bits(), Channel::Two => self.tim.ccr2.read().ccr2().bits(), Channel::Three => self.tim.ccr3.read().ccr3().bits(), Channel::Four => self.tim.ccr4.read().ccr4().bits(), } } else { match channel { Channel::One => self.tim.ccr1.read().ccr().bits(), Channel::Two => self.tim.ccr2.read().ccr().bits(), Channel::Three => self.tim.ccr3.read().ccr().bits(), Channel::Four => self.tim.ccr4.read().ccr().bits(), } } } } /// Set the duty cycle, as a portion of `get_max_duty()`. pub fn set_duty(&mut self, channel: Channel, duty: $res) { cfg_if! { if #[cfg(feature = "g0")] { match channel { Channel::One => self.tim.ccr1.read().bits(), Channel::Two => self.tim.ccr2.read().bits(), Channel::Three => self.tim.ccr3.read().bits(), Channel::Four => self.tim.ccr4.read().bits(), }; } else if #[cfg(feature = "g4")] { unsafe { match channel { Channel::One => self.tim.ccr1.write(|w| w.ccr1().bits(duty)), Channel::Two => self.tim.ccr2.write(|w| w.ccr2().bits(duty)), Channel::Three => self.tim.ccr3.write(|w| w.ccr3().bits(duty)), Channel::Four => self.tim.ccr4.write(|w| w.ccr4().bits(duty)), } } } else { match channel { Channel::One => self.tim.ccr1.write(|w| w.ccr().bits(duty)), Channel::Two => self.tim.ccr2.write(|w| w.ccr().bits(duty)), Channel::Three => self.tim.ccr3.write(|w| w.ccr().bits(duty)), Channel::Four => self.tim.ccr4.write(|w| w.ccr().bits(duty)), } } } } /// Return the integer associated with the maximum duty period. /// todo: Duty could be u16 for low-precision timers. pub fn get_max_duty(&self) -> $res { #[cfg(feature = "g0")] return self.tim.arr.read().bits(); #[cfg(not(feature = "g0"))] return self.tim.arr.read().arr().bits(); } /// Set timer alignment to Edge, or one of 3 center modes. /// STM32F303 ref man, section 21.4.1: /// Bits 6:5 CMS: Center-aligned mode selection /// 00: Edge-aligned mode. The counter counts up or down depending on the direction bit /// (DIR). /// 01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare /// interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set /// only when the counter is counting down. /// 10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare /// interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set /// only when the counter is counting up. /// 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare /// interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set /// both when the counter is counting up or down. pub fn set_alignment(&mut self, alignment: Alignment) { let word = match alignment { Alignment::Edge => 0b00, Alignment::Center1 => 0b01, Alignment::Center2 => 0b10, Alignment::Center3 => 0b11, }; self.tim.cr1.modify(|_, w| unsafe { w.cms().bits(word) }); } /// Set output polarity. See docs on the `Polarity` enum. pub fn set_polarity(&mut self, channel: Channel, polarity: Polarity) { match channel { Channel::One => self.tim.ccer.modify(|_, w| w.cc1p().bit(polarity.bit())), Channel::Two => self.tim.ccer.modify(|_, w| w.cc2p().bit(polarity.bit())), Channel::Three => self.tim.ccer.modify(|_, w| w.cc3p().bit(polarity.bit())), Channel::Four => self.tim.ccer.modify(|_, w| w.cc4p().bit(polarity.bit())), } } /// Set complementary output polarity. See docs on the `Polarity` enum. pub fn set_complementary_polarity(&mut self, channel: Channel, polarity: Polarity) { match channel { Channel::One => self.tim.ccer.modify(|_, w| w.cc1np().bit(polarity.bit())), Channel::Two => self.tim.ccer.modify(|_, w| w.cc2np().bit(polarity.bit())), Channel::Three => self.tim.ccer.modify(|_, w| w.cc3np().bit(polarity.bit())), Channel::Four => self.tim.ccer.modify(|_, w| w.cc4np().bit(polarity.bit())), } } /// Disables capture compare on a specific channel. pub fn disable_capture_compare(&mut self, channel: Channel) { match channel { Channel::One => self.tim.ccer.modify(|_, w| w.cc1e().clear_bit()), Channel::Two => self.tim.ccer.modify(|_, w| w.cc2e().clear_bit()), Channel::Three => self.tim.ccer.modify(|_, w| w.cc3e().clear_bit()), Channel::Four => self.tim.ccer.modify(|_, w| w.cc4e().clear_bit()), } } /// Enables capture compare on a specific channel. pub fn enable_capture_compare(&mut self, channel: Channel) { match channel { Channel::One => self.tim.ccer.modify(|_, w| w.cc1e().set_bit()), Channel::Two => self.tim.ccer.modify(|_, w| w.cc2e().set_bit()), Channel::Three => self.tim.ccer.modify(|_, w| w.cc3e().set_bit()), Channel::Four => self.tim.ccer.modify(|_, w| w.cc4e().set_bit()), } } /// Set Capture Compare Mode. See docs on the `CaptureCompare` enum. pub fn set_capture_compare(&mut self, channel: Channel, mode: CaptureCompare) { match channel { // Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER) Channel::One => self .tim .ccmr1_output() .modify(unsafe { |_, w| w.cc1s().bits(mode as u8) }), Channel::Two => self .tim .ccmr1_output() .modify(unsafe { |_, w| w.cc2s().bits(mode as u8) }), Channel::Three => self .tim .ccmr2_output() .modify(unsafe { |_, w| w.cc3s().bits(mode as u8) }), Channel::Four => self .tim .ccmr2_output() .modify(unsafe { |_, w| w.cc4s().bits(mode as u8) }), } } /// Set auto reload preloader; useful when changing period and duty mid-run. pub fn set_auto_reload_preload(&mut self, mode: bool) { self.tim.cr1.modify(|_, w| w.arpe().bit(mode)); } /// Set preload mode. /// OC1PE: Output Compare 1 preload enable /// 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the /// new value is taken in account immediately. /// 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload /// register. TIMx_CCR1 preload value is loaded in the active register at each update event. /// Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed /// (LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in /// output). /// 2: The PWM mode can be used without validating the preload register only in one /// pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. /// /// Setting preload is required to enable PWM. pub fn set_preload(&mut self, channel: Channel, value: bool) { match channel { Channel::One => self.tim.ccmr1_output().modify(|_, w| w.oc1pe().bit(value)), Channel::Two => self.tim.ccmr1_output().modify(|_, w| w.oc2pe().bit(value)), Channel::Three => self.tim.ccmr2_output().modify(|_, w| w.oc3pe().bit(value)), Channel::Four => self.tim.ccmr2_output().modify(|_, w| w.oc4pe().bit(value)), } // "As the preload registers are transferred to the shadow registers only when an update event // occurs, before starting the counter, you have to initialize all the registers by setting the UG // bit in the TIMx_EGR register." self.tim.egr.write(|w| w.ug().set_bit()); // Update } } }; } // We only implement `pwm_features` for general purpose timers. Perhaps we should implement // for advanced-control timers too. #[cfg(not(any(feature = "f373", feature = "f4")))] hal!(TIM1, tim1, 2); #[cfg(not(any( feature = "f301", feature = "f552", feature = "l4x3", feature = "l4x1", feature = "l552", feature = "f410", )))] hal!(TIM3, tim3, 1); #[cfg(not(any( feature = "l4x1", feature = "l4x3", feature = "l5", feature = "f410", feature = "g0" )))] pwm_features!(TIM3, u16); #[cfg(feature = "g0")] pwm_features!(TIM3, u32); cfg_if! { if #[cfg(not(any( feature = "f301", feature = "f3x4", feature = "l4x1", feature = "l4x2", feature = "l4x3", feature = "l552", feature = "f4", feature = "g0", )))] { hal!(TIM4, tim4, 1); hal!(TIM17, tim17, 2); } } #[cfg(not(any( feature = "f3x4", feature = "l4x1", feature = "l4x2", feature = "l4x3", feature = "l5", feature = "f410", feature = "g0", )))] pwm_features!(TIM4, u16); #[cfg(any( feature = "f373", feature = "l4x5", feature = "l4x6", feature = "l562", feature = "h7", feature = "f4", ))] hal!(TIM5, tim5, 1); #[cfg(not(any( feature = "f301", feature = "f302", feature = "f401", feature = "f410", feature = "f411", feature = "g031", feature = "g041", feature = "g030" )))] hal!(TIM7, tim7, 1); cfg_if! { if #[cfg(not(any( feature = "f401", feature = "f410", feature = "f411", feature = "g031", feature = "g041", feature = "g070", feature = "g030" )))] { hal!(TIM2, tim2, 1); hal!(TIM6, tim6, 1); } } #[cfg(not(feature = "f4"))] hal!(TIM16, tim16, 2); // Todo: the L5 PAC has an address error on TIM15 - remove it until solved. #[cfg(not(any( feature = "l5", feature = "f4", feature = "g031", feature = "g031", feature = "g041", feature = "g030" )))] hal!(TIM15, tim15, 2); // todo: G4 has tim2, and it's 32-bit, but there may be a PAC error here; pac expects arr to be 16 bit. #[cfg(not(any( feature = "l4x1", feature = "l5", feature = "g4", feature = "f410", feature = "g070" )))] pwm_features!(TIM2, u32); #[cfg(any( feature = "f303", feature = "l4x5", feature = "l4x6", feature = "l562", feature = "g4" ))] hal!(TIM8, tim8, 2); // { todo: tim18 // TIM18: (tim18, apb2, enr, rstr), // }, #[cfg(any(feature = "f303"))] hal!(TIM20, tim20, 2); cfg_if! { if #[cfg(any(feature = "f373"))] { hal!(TIM12, tim12, 1); hal!(TIM13, tim13, 1); hal!(TIM14, tim14, 1); hal!(TIM19, tim19, 2); } } // todo: Figure out which timers G4 has, and add A/R.