1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
//! Ethernet DMA access and configuration.
use cortex_m::peripheral::NVIC;
use crate::{peripherals::ETHERNET_DMA, stm32::Interrupt};
#[cfg(feature = "smoltcp-phy")]
mod smoltcp_phy;
#[cfg(feature = "smoltcp-phy")]
pub use smoltcp_phy::*;
#[cfg(feature = "async-await")]
use futures::task::AtomicWaker;
#[cfg(any(feature = "ptp", feature = "async-await"))]
use core::task::Poll;
pub(crate) mod desc;
pub(crate) mod ring;
mod rx;
pub use rx::{RunningState as RxRunningState, RxError, RxPacket, RxRing, RxRingEntry};
mod tx;
pub use tx::{RunningState as TxRunningState, TxError, TxPacket, TxRing, TxRingEntry};
#[cfg(feature = "ptp")]
use crate::ptp::Timestamp;
mod packet_id;
pub use packet_id::PacketId;
/// From the datasheet: *VLAN Frame maxsize = 1522*
pub(crate) const MTU: usize = 1522;
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq)]
/// This struct is returned if a packet ID is not associated
/// with any TX or RX descriptors.
pub struct PacketIdNotFound;
/// Ethernet DMA.
pub struct EthernetDMA<'rx, 'tx> {
pub(crate) eth_dma: ETHERNET_DMA,
pub(crate) rx_ring: RxRing<'rx>,
pub(crate) tx_ring: TxRing<'tx>,
#[cfg(feature = "ptp")]
packet_id_counter: u32,
}
impl<'rx, 'tx> EthernetDMA<'rx, 'tx> {
/// Create and initialise the ethernet DMA
///
/// # Note
/// - Make sure that the buffers reside in a memory region that is
/// accessible by the peripheral. Core-Coupled Memory (CCM) is
/// usually not accessible.
pub(crate) fn new(
eth_dma: ETHERNET_DMA,
rx_buffer: &'rx mut [RxRingEntry],
tx_buffer: &'tx mut [TxRingEntry],
) -> Self {
// reset DMA bus mode register
eth_dma.dmabmr.modify(|_, w| w.sr().set_bit());
// Wait until done
while eth_dma.dmabmr.read().sr().bit_is_set() {}
// operation mode register
eth_dma.dmaomr.modify(|_, w| {
// Dropping of TCP/IP checksum error frames disable
w.dtcefd()
.set_bit()
// Receive store and forward
.rsf()
.set_bit()
// Disable flushing of received frames
.dfrf()
.set_bit()
// Transmit store and forward
.tsf()
.set_bit()
// Forward error frames
.fef()
.set_bit()
// Operate on second frame
.osf()
.set_bit()
});
// bus mode register
eth_dma.dmabmr.modify(|_, w| {
// For any non-f107 chips, we must use enhanced descriptor format to support checksum
// offloading and/or timestamps.
#[cfg(not(feature = "stm32f1xx-hal"))]
let w = w.edfe().set_bit();
unsafe {
// Address-aligned beats
w.aab()
.set_bit()
// Fixed burst
.fb()
.set_bit()
// Rx DMA PBL
.rdp()
.bits(32)
// Programmable burst length
.pbl()
.bits(32)
// Rx Tx priority ratio 2:1
.pm()
.bits(0b01)
// Use separate PBL
.usp()
.set_bit()
}
});
let mut dma = EthernetDMA {
eth_dma,
rx_ring: RxRing::new(rx_buffer),
tx_ring: TxRing::new(tx_buffer),
#[cfg(feature = "ptp")]
packet_id_counter: 0,
};
dma.rx_ring.start(&dma.eth_dma);
dma.tx_ring.start(&dma.eth_dma);
dma
}
/// Split the [`EthernetDMA`] into concurrently operating send and
/// receive parts.
pub fn split(&mut self) -> (&mut RxRing<'rx>, &mut TxRing<'tx>) {
(&mut self.rx_ring, &mut self.tx_ring)
}
/// Enable RX and TX interrupts
///
/// In your handler you must call
/// [`EthernetDMA::interrupt_handler()`] or [`stm32_eth::eth_interrupt_handler`](crate::eth_interrupt_handler)
/// to clear interrupt pending bits. Otherwise the interrupt will reoccur immediately.
///
/// [`EthernetPTP::interrupt_handler()`]: crate::ptp::EthernetPTP::interrupt_handler
#[cfg_attr(
feature = "ptp",
doc = "If you have PTP enabled, you must also call [`EthernetPTP::interrupt_handler()`] if you wish to make use of the PTP timestamp trigger feature."
)]
pub fn enable_interrupt(&self) {
self.eth_dma.dmaier.modify(|_, w| {
w
// Normal interrupt summary enable
.nise()
.set_bit()
// Receive Interrupt Enable
.rie()
.set_bit()
// Transmit Interrupt Enable
.tie()
.set_bit()
});
// Enable ethernet interrupts
unsafe {
NVIC::unmask(Interrupt::ETH);
}
}
/// Handle the DMA parts of the `ETH` interrupt.
pub fn interrupt_handler() -> InterruptReasonSummary {
// SAFETY: we only perform atomic reads/writes through `eth_dma`.
let eth_dma = unsafe { &*ETHERNET_DMA::ptr() };
let status = eth_dma.dmasr.read();
let status = InterruptReasonSummary {
is_rx: status.rs().bit_is_set(),
is_tx: status.ts().bit_is_set(),
is_error: status.ais().bit_is_set(),
};
eth_dma
.dmasr
.write(|w| w.nis().set_bit().ts().set_bit().rs().set_bit());
#[cfg(feature = "async-await")]
{
if status.is_tx {
EthernetDMA::tx_waker().wake();
}
if status.is_rx {
EthernetDMA::rx_waker().wake();
}
}
status
}
/// Try to receive a packet.
///
/// If no packet is available, this function returns [`Err(RxError::WouldBlock)`](RxError::WouldBlock).
///
/// It may also return another kind of [`RxError`].
pub fn recv_next(&mut self, packet_id: Option<PacketId>) -> Result<RxPacket, RxError> {
self.rx_ring.recv_next(packet_id.map(Into::into))
}
/// Is Rx DMA currently running?
///
/// It stops if the ring is full. Call [`EthernetDMA::recv_next()`] to free an
/// entry and to demand poll from the hardware.
pub fn rx_is_running(&self) -> bool {
self.rx_ring.running_state().is_running()
}
/// Is Tx DMA currently running?
pub fn tx_is_running(&self) -> bool {
self.tx_ring.is_running()
}
/// Try to send a packet with data.
///
/// If there are no free TX slots, this function will
/// return [`Err(TxError::WouldBlock)`](TxError::WouldBlock).
pub fn send<F>(
&mut self,
length: usize,
packet_id: Option<PacketId>,
f: F,
) -> Result<(), TxError>
where
F: FnOnce(&mut [u8]),
{
let mut tx_packet = self.tx_ring.send_next(length, packet_id)?;
f(&mut tx_packet);
tx_packet.send();
Ok(())
}
/// Check if there is a packet available for reading.
///
/// If this function returns true, it is guaranteed that the
/// next call to [`EthernetDMA::recv_next`] will return [`Ok`].
pub fn rx_available(&mut self) -> bool {
self.rx_ring.next_entry_available()
}
/// Check if sending a packet now would succeed.
///
/// If this function returns true, it is guaranteed that
/// the next call to [`EthernetDMA::send`] will return [`Ok`]
pub fn tx_available(&mut self) -> bool {
self.tx_ring.next_entry_available()
}
}
impl Drop for EthernetDMA<'_, '_> {
// On drop, stop all DMA actions.
fn drop(&mut self) {
self.tx_ring.stop(&self.eth_dma);
self.rx_ring.stop(&self.eth_dma);
}
}
#[cfg(feature = "async-await")]
impl<'rx, 'tx> EthernetDMA<'rx, 'tx> {
pub(crate) fn rx_waker() -> &'static AtomicWaker {
static WAKER: AtomicWaker = AtomicWaker::new();
&WAKER
}
pub(crate) fn tx_waker() -> &'static AtomicWaker {
static WAKER: AtomicWaker = AtomicWaker::new();
&WAKER
}
/// Receive a packet.
///
/// See [`RxRing::recv`].
pub async fn recv(&mut self, packet_id: Option<PacketId>) -> RxPacket {
self.rx_ring.recv(packet_id).await
}
/// Prepare a packet for sending.
///
/// See [`TxRing::prepare_packet`].
pub async fn prepare_packet<'borrow>(
&'borrow mut self,
length: usize,
packet_id: Option<PacketId>,
) -> TxPacket<'borrow, 'tx> {
self.tx_ring.prepare_packet(length, packet_id).await
}
/// Wait for an RX or TX interrupt to have
/// occured.
pub async fn rx_or_tx(&mut self) {
let mut polled_once = false;
core::future::poll_fn(|ctx| {
if polled_once {
Poll::Ready(())
} else {
polled_once = true;
EthernetDMA::rx_waker().register(ctx.waker());
EthernetDMA::tx_waker().register(ctx.waker());
Poll::Pending
}
})
.await;
}
}
#[cfg(feature = "ptp")]
impl EthernetDMA<'_, '_> {
/// Try to get the timestamp for the given packet ID.
///
/// This function will attempt to find both RX and TX timestamps,
/// so make sure that the provided packet ID is unique between the two.
pub fn poll_timestamp(
&self,
packet_id: &PacketId,
) -> Poll<Result<Option<Timestamp>, PacketIdNotFound>> {
// Check if it's a TX packet
let tx = self.poll_tx_timestamp(packet_id);
if tx != Poll::Ready(Err(PacketIdNotFound)) {
return tx;
}
// It's not a TX packet, check if it's an RX packet
Poll::Ready(self.rx_timestamp(packet_id))
}
/// Get the RX timestamp for the given packet ID.
pub fn rx_timestamp(
&self,
packet_id: &PacketId,
) -> Result<Option<Timestamp>, PacketIdNotFound> {
self.rx_ring.timestamp(packet_id)
}
/// Blockingly wait until the TX timestamp for
/// the given ID is available.
pub fn wait_for_tx_timestamp(
&self,
packet_id: &PacketId,
) -> Result<Option<Timestamp>, PacketIdNotFound> {
self.tx_ring.wait_for_timestamp(packet_id)
}
/// Poll to check if the TX timestamp for the given
/// ID is available.
pub fn poll_tx_timestamp(
&self,
packet_id: &PacketId,
) -> Poll<Result<Option<Timestamp>, PacketIdNotFound>> {
self.tx_ring.poll_timestamp(packet_id)
}
/// Get the TX timestamp for the given ID.
#[cfg(feature = "async-await")]
pub async fn tx_timestamp(
&mut self,
packet_id: &PacketId,
) -> Result<Option<Timestamp>, PacketIdNotFound> {
self.tx_ring.timestamp(packet_id).await
}
/// Get the next packet ID.
pub fn next_packet_id(&mut self) -> PacketId {
let id = PacketId(self.packet_id_counter);
self.packet_id_counter = self.packet_id_counter.wrapping_add(1);
id
}
}
/// A summary of the reasons for the interrupt
/// that occured
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Debug, Clone, Copy)]
pub struct InterruptReasonSummary {
/// The interrupt was caused by an RX event.
pub is_rx: bool,
/// The interrupt was caused by an TX event.
pub is_tx: bool,
/// The interrupt was caused by an error event.
pub is_error: bool,
}