1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// SPDX-FileCopyrightText: 2022 Thomas Kramer <code@tkramer.ch>
//
// SPDX-License-Identifier: GPL-3.0-or-later

//! Data structure of the lookup table.

use crate::tree::Tree;
use crate::point::Point;
use super::wirelength_vector::*;
use super::position_sequence::PositionSequence;
use super::hanan_grid::HananGridWithCoords;
use num_traits::{Num, Zero, PrimInt};
use std::iter::Sum;
use std::ops::Add;
use super::HananCoord;
use super::marker_types::Canonical;

/// Lookup-table for nets of low degree.
#[derive(Clone, Debug)]
pub struct LookupTable {
    /// Lookup tables for each degree of net.
    pub(crate) sub_lut_by_degree: Vec<SubLookupTable>
}

impl LookupTable {
    /// Find a rectilinear steiner minimal tree which connects all pins.
    /// Number of de-duplicated pins cannot be larger than the maximum supported number of pins of the
    /// lookup table.
    ///
    /// Returns: (tree edges, tree weight).
    pub fn rsmt_low_degree<T>(&self, mut pins: Vec<Point<T>>) -> (Vec<(Point<T>, Point<T>)>, T)
        where T: Ord + Copy + Num + Zero + Sum + std::fmt::Debug {

        // Normalize pins.
        pins.sort();
        pins.dedup();

        let num_pins = pins.len();

        if num_pins <= 1 {
            return (vec![], Zero::zero());
        }

        assert!(pins.len() <= self.max_degree(), "number of pins exceeds the supported maximal net degree");

        let position_sequence = PositionSequence::from_points(&pins);
        let group_index = position_sequence.group_index();

        let sub_lut = self.get_sub_lut(num_pins);
        debug_assert_eq!(sub_lut.values.len(), (1..num_pins + 1).product());

        // Resolve eventual redirect to other group index.
        let (powvs, transform) = sub_lut.resolve_group_index(group_index);

        // Transform the points into the target group.
        pins.iter_mut()
            .for_each(|p| {
                *p = transform.transform_point(*p);
            });

        // Find coordinates of Hanan grid lines.
        let xs = {
            let mut xs: Vec<_> = pins.iter().map(|p| p.x).collect();
            xs.sort();
            xs
        };
        let ys = {
            let mut ys: Vec<_> = pins.iter().map(|p| p.y).collect();
            ys.sort();
            ys
        };

        // Compute distances between Hanan grid lines.
        let (edge_widths_horizontal, edge_widths_vertical) = {
            let mut w = xs.clone();
            let mut h = ys.clone();

            for i in 0..xs.len() - 1 {
                w[i] = w[i + 1] - w[i];
                h[i] = h[i + 1] - h[i];
            }
            w.pop();
            h.pop();
            (w, h)
        };

        // Evaluate POWVs, find the POWV which leads to shortest wirelength.
        let best_powv_and_post = {

            // Compute scalar product of wirelength vector and edge count vector.
            let compute_wire_length = |powv: &WirelenghtVector| -> T {
                let (h, v) = powv.hv_vectors();
                debug_assert_eq!(h.len(), edge_widths_horizontal.len());
                debug_assert_eq!(v.len(), edge_widths_vertical.len());

                let wl_horiz: T = h.into_iter()
                    .zip(&edge_widths_horizontal)
                    .map(|(count, w)| (0..*count).map(|_| *w).sum())
                    // .fold(Zero::zero(), |acc,x| acc+x); // sum
                    .sum();

                let wl_vert: T = v.into_iter()
                    .zip(&edge_widths_vertical)
                    .map(|(count, w)| (0..*count).map(|_| *w).sum())
                    .sum();

                wl_horiz + wl_vert
            };

            powvs.into_iter()
                .map(|powv| (powv, compute_wire_length(&powv.potential_optimal_wirelength_vector)))
                .min_by_key(|(_powv, wire_len)| *wire_len)

        };

        let (best_powv_and_post, wire_length) = best_powv_and_post.expect("no steiner tree found");

        // Transform a point from the hanan grid with unit distances to the original grid.
        let transform_point_to_original_grid = |p: Point<HananCoord>| -> Point<T> {
            Point::new(xs[p.x as usize], ys[p.y as usize])
        };

        let tree_edges = best_powv_and_post.potential_optimal_steiner_tree
            .all_edges()
            .map(|e| (e.start(), e.end())) // Remove zero-length edges.
            .map(|(a, b)| (transform_point_to_original_grid(a), transform_point_to_original_grid(b)));

        // Transform back to original group.
        let inverse_transform = transform.inverse();

        let tree = tree_edges
            .map(|(a, b)|
                     (inverse_transform.transform_point(a), inverse_transform.transform_point(b))
            )
            .filter(|(a, b)| a != b)
            .collect();

        (tree, wire_length)
    }

    /// Get maximum number of pins which is supported by the lookup-table.
    pub fn max_degree(&self) -> usize {
        self.sub_lut_by_degree.len() + 1
    }

    /// Get the lookup-table for a net of degree `num_pins`.
    pub fn get_sub_lut(&self, num_pins: usize) -> &SubLookupTable {
        assert!(num_pins >=2, "no LUT for less than 2 pins");
        &self.sub_lut_by_degree[num_pins-2]
    }

    /// Print number of POWVs and POSTs.
    pub fn print_statistics(&self) {
        for (degree, sub_lut) in self.sub_lut_by_degree.iter().enumerate() {
            let degree = degree + 2;
            let max_num_powvs = sub_lut.values.iter()
                .filter_map(|v| match v {
                    ValuesOrRedirect::Values(v) => Some(v.len()),
                    ValuesOrRedirect::Redirect { .. } => None
                })
                .max()
                .unwrap_or(0);

            let total_num_powvs: usize = sub_lut.values.iter()
                .map(|v| match v {
                    ValuesOrRedirect::Values(v) => v.len(),
                    ValuesOrRedirect::Redirect { group_index, .. } => {
                        match &sub_lut.values[*group_index] {
                            ValuesOrRedirect::Values(v) => v.len(),
                            _ => panic!("invalid double-redirect")
                        }
                    }
                })
                .sum();
            let average_num_pows = (total_num_powvs as f64) / (sub_lut.values.len() as f64);

            println!("degree={}, max. number of POWVs = {}, avg. num. POWVs = {:.3}", degree, max_num_powvs, average_num_pows);
        }
    }
}

#[test]
fn test_rsmt_low_degree() {
    let lut = super::gen_lut::gen_full_lut(5);

    // 3 points
    let points = vec![(5,0).into(), (0, 10).into(), (10, 10).into()];
    let (rsmt, wl) = lut.rsmt_low_degree(points);
    assert_eq!(rsmt.len(), 3);
    assert_eq!(wl, 20);

    // 4 points
    let points = vec![(0,0).into(), (2, 1).into(), (2, 4).into(), (4, 2).into()];
    let (rsmt, wl) = lut.rsmt_low_degree(points);
    assert_eq!(rsmt.len(), 5);
    assert_eq!(wl, 8);

    // 5 points (cross with a center)
    let points = vec![(10,5).into(), (5, 0).into(), (5, 5).into(), (0, 5).into(), (5, 10).into()];
    let (rsmt, wl) = lut.rsmt_low_degree(points);
    assert_eq!(rsmt.len(), 4);
    assert_eq!(wl, 20);
}

/// Lookup-table for a single degree of nets.
#[derive(Clone, Debug)]
pub struct SubLookupTable {
    /// Potential optimal wire-length vectors and trees, indexed by their 'group index'.
    pub(crate) values: Vec<ValuesOrRedirect>
}

impl SubLookupTable {
    /// Get the POWVs and POSTs for a group index. Follow symlinks to other groups.
    ///
    /// Returns the vector of POWVs and POSTs plus the transform which must be applied to convert
    /// the pins.
    fn resolve_group_index(&self, group_index: usize) -> (&Vec<LutValue>, Transform){
        let lut_value = &self.values[group_index];

        // Resolve eventual redirect to other group index.
        match lut_value {
            ValuesOrRedirect::Values(values) => (values, Transform::identity()),
            &ValuesOrRedirect::Redirect { group_index, transform } => {
                // Resolve redirection.
                let values = match &self.values[group_index] {
                    ValuesOrRedirect::Values(values) => values,
                    _ => panic!("lookup-table contains nested redirects")
                };
                (values, transform)
            }
        }
    }
}

/// A pair of a wirelength vector with a tree.
#[derive(Clone, Debug)]
pub struct LutValue {
    /// 'POWV'
    pub(crate) potential_optimal_wirelength_vector: WirelenghtVector,
    /// 'POST'
    pub(crate) potential_optimal_steiner_tree: Tree<Canonical>,
}


/// Contains either the POWVs for a group or redirects to another group which is equivalent
/// under rotations and/or mirroring transforms.
#[derive(Debug, Clone)]
pub enum ValuesOrRedirect {
    /// Wirelength vectors and trees for this group.
    Values(Vec<LutValue>),
    /// Redirection to another equivalent group (under the given transformation).
    Redirect {
        /// Index of the redirect.
        group_index: usize,
        /// Transformation that needs to be applied to get from the current group to the redirect.
        transform: Transform,
    },
}

/// Geometrical transformation of pins and trees.
/// Note: After applying the transformation, the points and trees must be shifted
/// such that the lower left corner of the bounding box is on `(0, 0)`.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub struct Transform {
    /// Mirror at y-axis.
    mirror_x: bool,
    /// Rotations by multiple of 90 degrees.
    rotate: u8,
}

impl Transform {
    /// Create a new transformation.
    pub fn new(rotate: u8, mirror_x: bool) -> Self {
        Self {
            rotate: rotate % 4,
            mirror_x,
        }
    }

    /// Identity transform.
    pub fn identity() -> Self {
        Self::new(0, false)
    }

    /// Get the inverse transform.
    pub fn inverse(&self) -> Self {
        let r = if self.mirror_x {
            self.rotate
        } else {
            4 - self.rotate
        };
        Self::new(r, self.mirror_x)
    }

    /// Apply the transform to a point.
    pub fn transform_point<T>(&self, mut p: Point<T>) -> Point<T>
        where T: Copy + Num + Zero {

        for _ in 0..self.rotate {
            p.rotate_ccw90();
        }

        if self.mirror_x {
            p.x = T::zero()-p.x;
        }

        p
    }
}