1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
use melodium_core::*;
use melodium_macro::{check, mel_treatment};
/// Flatten a stream of vector.
///
/// All the input vectors are turned into continuous stream of scalar values, keeping order.
/// ```mermaid
/// graph LR
/// T("flatten()")
/// B["[🟦 🟦][🟦][🟦 🟦 🟦]"] -->|vector| T
///
/// T -->|value| O["🟦 🟦 🟦 🟦 🟦 🟦"]
///
/// style B fill:#ffff,stroke:#ffff
/// style O fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
generic T ()
input vector Stream<Vec<T>>
output value Stream<T>
)]
pub async fn flatten() {
'main: while let Ok(mut vectors) = vector
.recv_many()
.await
.map(|values| Into::<VecDeque<Value>>::into(values))
{
while let Some(vector) = vectors.pop_front().map(|val| match val {
Value::Vec(vec) => vec,
_ => panic!("Vec expected"),
}) {
for val in vector {
check!('main, value.send_one(val).await)
}
}
}
}
/// Gives pattern of a stream of vectors.
///
/// ```mermaid
/// graph LR
/// T("pattern()")
/// A["…[🟨 🟨][🟨][🟨 🟨 🟨]"] -->|stream| T
///
/// T -->|pattern| O["… [🟦 🟦][🟦][🟦 🟦 🟦]"]
///
/// style A fill:#ffff,stroke:#ffff
/// style O fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
generic T ()
input stream Stream<Vec<T>>
output pattern Stream<Vec<void>>
)]
pub async fn pattern() {
'main: while let Ok(vectors) = stream
.recv_many()
.await
.map(|values| Into::<VecDeque<Value>>::into(values))
{
for val in vectors {
match val {
Value::Vec(vec) => {
check!('main, pattern.send_one(vec![(); vec.len()].into()).await)
}
_ => panic!("Vec expected"),
}
}
}
}
/// Fit a stream of raw values into stream of vectors using a pattern.
///
/// ℹ️ If some remaining values doesn't fit into the pattern, they are trashed.
/// If there are not enough values to fit the pattern, uncomplete vector is trashed.
///
/// ```mermaid
/// graph LR
/// T("fit()")
/// A["… 🟨 🟨 🟨 🟨 🟨 🟨"] -->|value| T
/// B["[🟦 🟦][🟦][🟦 🟦 🟦]"] -->|pattern| T
///
/// T -->|fitted| O["[🟨 🟨][🟨][🟨 🟨 🟨]"]
///
/// style A fill:#ffff,stroke:#ffff
/// style B fill:#ffff,stroke:#ffff
/// style O fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
generic T ()
input value Stream<T>
input pattern Stream<Vec<void>>
output fitted Stream<Vec<T>>
)]
pub async fn fit() {
'main: while let Ok(patterns) = pattern
.recv_many()
.await
.map(|values| Into::<VecDeque<Value>>::into(values))
{
for pattern in patterns {
match pattern {
Value::Vec(pattern) => {
let mut vector = Vec::with_capacity(pattern.len());
for _ in 0..pattern.len() {
if let Ok(val) = value.recv_one().await {
vector.push(val);
} else {
// Uncomplete, we 'trash' vector
break 'main;
}
}
check!('main, fitted.send_one(vector.into()).await)
}
_ => panic!("Vec expected"),
}
}
}
}
/// Fill a pattern stream with a `i64` value.
///
/// ```mermaid
/// graph LR
/// T("fill(value=🟧)")
/// B["…[🟦 🟦][🟦][🟦 🟦 🟦]…"] -->|pattern| T
///
/// T -->|filled| O["…[🟧 🟧][🟧][🟧 🟧 🟧]…"]
///
/// style B fill:#ffff,stroke:#ffff
/// style O fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
generic T ()
input pattern Stream<Vec<void>>
output filled Stream<Vec<T>>
)]
pub async fn fill(value: T) {
'main: while let Ok(patterns) = pattern
.recv_many()
.await
.map(|values| Into::<VecDeque<Value>>::into(values))
{
for pattern in patterns {
match pattern {
Value::Vec(pattern) => {
check!('main, filled.send_one(vec![value.clone(); pattern.len()].into()).await)
}
_ => panic!("Vec expected"),
}
}
}
}
/// Gives size of vectors passing through stream.
///
/// For each vector one `size` value is sent, giving the number of elements contained within matching vector.
///
/// ```mermaid
/// graph LR
/// T("size()")
/// V["[🟦 🟦][🟦][][🟦 🟦 🟦]…"] -->|vector| T
///
/// T -->|size| P["2️⃣ 1️⃣ 0️⃣ 3️⃣ …"]
///
/// style V fill:#ffff,stroke:#ffff
/// style P fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
generic T ()
input vector Stream<Vec<T>>
output size Stream<u64>
)]
pub async fn size() {
while let Ok(iter) = vector
.recv_many()
.await
.map(|values| Into::<VecDeque<Value>>::into(values))
{
check!(
size.send_many(
iter.into_iter()
.map(|v| match v {
Value::Vec(v) => v.len() as u64,
_ => panic!("Vec expected"),
})
.collect::<VecDeque<_>>()
.into()
)
.await
);
}
}
/// Resize vectors according to given streamed size.
///
/// If a vector is smaller than expected size, it is extended using the `default` value.
///
/// ```mermaid
/// graph LR
/// T("resize(default=🟨)")
/// V["[🟦 🟦][🟦][][🟦 🟦 🟦]…"] -->|vector| T
/// S["3️⃣ 2️⃣ 3️⃣ 2️⃣ …"] -->|size| T
///
/// T -->|resized| P["[🟦 🟦 🟨][🟦 🟨][🟨 🟨 🟨][🟦 🟦]…"]
///
/// style V fill:#ffff,stroke:#ffff
/// style S fill:#ffff,stroke:#ffff
/// style P fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
generic T ()
input vector Stream<Vec<T>>
input size Stream<u64>
output resized Stream<Vec<T>>
)]
pub async fn resize(default: T) {
while let Ok(size) = size
.recv_one()
.await
.map(|val| GetData::<u64>::try_data(val).unwrap())
{
if let Ok(vec) = vector.recv_one().await {
match vec {
Value::Vec(mut vec) => {
vec.resize(size as usize, default.clone());
check!(resized.send_one(vec.into()).await);
}
_ => panic!("Vec expected"),
}
} else {
break;
}
}
}