1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
//! Confidence intervals over the mean (arithmetic, geometric, harmonic) of a given sample.
//!
//! The calculations use Student's t distribution regardless of sample size.
//! This provides more conservative (and accurate intervals) than the normal distribution
//! when the number of samples is small, and asymptotically approaches the normal distribution
//! as the number of samples increases.
//!
//! # Examples
//!
//! Confidence intervals on the arithmetic mean of a sample:
//! ```
//! # fn test() -> stats_ci::CIResult<()> {
//! use stats_ci::*;
//! let data = [
//!     82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
//!     15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
//!     71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
//!     98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
//!     49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
//!     37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
//! ];
//! let confidence = Confidence::new_two_sided(0.95);
//! let ci = mean::Arithmetic::ci(confidence, data)?;
//! // mean: 53.67
//! // stddev: 28.097613040716798
//! // reference values computed in python
//! // [48.094823990767836, 59.24517600923217]
//! use num_traits::Float;
//! use assert_approx_eq::assert_approx_eq;
//! assert_approx_eq!(ci.low_f(), 48.094823990767836, 1e-6);
//! assert_approx_eq!(ci.high_f(), 59.24517600923217, 1e-6);
//! # Ok(())
//! # }
//! ```
//!
//! Confidence intervals on the geometric mean of a sample:
//! ```
//! # fn test() -> stats_ci::CIResult<()> {
//! # use stats_ci::*;
//! # let data = [
//! #    82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
//! #    15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
//! #    71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
//! #    98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
//! #    49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
//! #    37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
//! # ];
//! # let confidence = Confidence::new_two_sided(0.95);
//! let ci = mean::Geometric::ci(confidence, data)?;
//! // geometric mean: 43.7268032829256
//! // reference values computed in python:
//! // [37.731050052224354, 50.67532768627392]
//! # use num_traits::Float;
//! # use assert_approx_eq::assert_approx_eq;
//! assert_approx_eq!(ci.low_f(), 37.731050052224354, 1e-6);
//! assert_approx_eq!(ci.high_f(), 50.67532768627392, 1e-6);
//! # Ok(())
//! # }
//! ```
//!
//! Confidence intervals on the harmonic mean of a sample:
//! ```
//! # fn test() -> stats_ci::CIResult<()> {
//! # use stats_ci::*;
//! # let data = [
//! #     1.81600583, 0.07498389, 1.29092744, 0.62023863, 0.09345327, 1.94670997, 2.27687339,
//! #     0.9251231, 1.78173864, 0.4391542, 1.36948099, 1.5191194, 0.42286756, 1.48463176,
//! #     0.17621009, 2.31810064, 0.15633061, 2.55137878, 1.11043948, 1.35923319, 1.58385561,
//! #     0.63431437, 0.49993148, 0.49168534, 0.11533354,
//! # ];
//! # let confidence = Confidence::new_two_sided(0.95);
//! let ci = mean::Harmonic::ci(confidence, data.clone())?;
//! // harmonic mean: 0.38041820166550844
//! // reference values computed in python:
//! // [0.2448670911003175, 0.8521343961033607]
//! # use num_traits::Float;
//! # use assert_approx_eq::assert_approx_eq;
//! assert_approx_eq!(ci.low_f(), 0.2448670911003175, 1e-6);
//! assert_approx_eq!(ci.high_f(), 0.8521343961033607, 1e-6);
//! # Ok(())
//! # }
//! ```
//!
//! The confidence interval and relevant statistics can also be computed incrementally:
//! ```
//! # fn test() -> stats_ci::CIResult<()> {
//! # use stats_ci::*;
//! # let data = [
//! #    55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23., 37., 72., 62., 77.,
//! #    63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
//! # ];
//! let stats = mean::Arithmetic::from_iter(data)?;
//! let confidence = Confidence::new_two_sided(0.95);
//! let ci = stats.ci_mean(confidence)?;
//! # Ok(())
//! # }
//! ```
use super::*;
use crate::utils;

use error::*;
use num_traits::Float;

///
/// Trait for incremental statistics.
/// This trait is implemented for the following statistics:
/// - [`mean::Arithmetic`] for arithmetic calculations
/// - [`mean::Geometric`] for geometric calculations (logarithmic space)
/// - [`mean::Harmonic`] for harmonic calculations (reciprocal space)
///
/// # Example
/// ```
/// # fn test() -> stats_ci::CIResult<()> {
/// use stats_ci::*;
/// let data = [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.];
/// let stats = mean::Arithmetic::from_iter(data)?;
/// assert_eq!(stats.sample_count(), 10);
/// assert_eq!(stats.sample_mean(), 5.5);
/// assert_eq!(stats.sample_sem(), 0.5);
/// let confidence = Confidence::new_two_sided(0.95);
/// let ci = stats.ci_mean(confidence)?;
/// assert_eq!(ci.low_f(), 3.5420208206306123);
/// assert_eq!(ci.high_f(), 7.457979179369388);
/// # Ok(())
/// # }
/// ```
pub trait StatisticsOps<F: Float>
where
    Self: Default,
{
    ///
    /// Create a new empty state
    ///
    /// # Example
    /// ```
    /// use stats_ci::*;
    /// let mut stats = mean::Arithmetic::new();
    /// stats.append(10.);
    /// assert_eq!(stats.sample_count(), 1);
    /// assert_eq!(stats.sample_mean(), 10.);
    /// ```
    ///
    fn new() -> Self {
        Default::default()
    }
    ///
    /// Create a new state and "populates" it with data from an iterator
    ///
    /// Complexity: O(n), where n is the number of elements in `data`
    ///
    /// # Arguments
    ///
    /// * `data` - The data to populate the state with
    ///
    /// # Errors
    ///
    /// * [`CIError::NonPositiveValue`] - If the input data contains non-positive values when computing harmonic/geometric means.
    ///
    /// # Example
    /// ```
    /// # fn test() -> stats_ci::CIResult<()> {
    /// use stats_ci::*;
    /// let data = [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.];
    /// let stats = mean::Arithmetic::from_iter(data)?;
    /// assert_eq!(stats.sample_count(), 10);
    /// assert_eq!(stats.sample_mean(), 5.5);
    /// assert_eq!(stats.sample_sem(), 0.5);
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// # Note
    ///
    /// This is simply a shortcut for [`Self::new`] and [`Self::extend`]:
    /// ```
    /// # fn test() -> stats_ci::CIResult<()> {
    /// # use stats_ci::*;
    /// # let data = [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.];
    /// let stats = mean::Arithmetic::new().extend(data)?;
    /// # Ok(())
    /// # }
    /// ```
    ///
    fn from_iter<I: IntoIterator<Item = F>>(data: I) -> CIResult<Self> {
        let mut state = Self::new();
        state.extend(data)?;
        Ok(state)
    }
    ///
    /// Mean of the sample
    ///
    /// Complexity: O(1)
    ///
    fn sample_mean(&self) -> F;
    ///
    /// Standard error of the sample mean
    ///
    /// Complexity: O(1)
    ///
    fn sample_sem(&self) -> F;
    ///
    /// Number of samples
    ///
    /// Complexity: O(1)
    ///
    fn sample_count(&self) -> usize;
    ///
    /// Confidence interval of the sample mean
    ///
    /// Complexity: O(1)
    ///
    fn ci_mean(&self, confidence: Confidence) -> CIResult<Interval<F>>;
    ///
    /// Append a new sample to the data
    ///
    /// Complexity: O(1)
    ///
    fn append(&mut self, x: F) -> CIResult<()>;
    ///
    /// Extend the data with additional sample data.
    ///
    /// This is equivalent to calling [`Self::append`] for each value in `data`.
    ///
    /// Complexity: O(n), where n is the number of elements in `data`
    ///
    /// # Arguments
    ///
    /// * `data` - The data to append as an array or an iterator
    ///
    /// # Output
    ///
    /// * `Ok(())` - If the data was successfully appended
    ///
    /// # Errors
    ///
    /// * [`CIError::NonPositiveValue`] - If the input data is invalid (for harmonic/geometric means).
    ///
    fn extend<I: IntoIterator<Item = F>>(&mut self, data: I) -> CIResult<()> {
        for x_i in data {
            self.append(x_i)?;
        }
        Ok(())
    }
}

///
/// Represents the state of the computation of the arithmetic mean.
/// This is a simple implementation that accumulates information about the samples, such as sum and sum of squares.
///
/// It is best used through the [`StatisticsOps`] trait.
///
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Arithmetic<F: Float> {
    sum: F,
    sum_c: F,
    sum_sq: F,
    sum_sq_c: F,
    count: usize,
}

impl<F: Float> Default for Arithmetic<F> {
    fn default() -> Self {
        Self {
            sum: F::zero(),
            sum_c: F::zero(),
            sum_sq: F::zero(),
            sum_sq_c: F::zero(),
            count: 0,
        }
    }
}

impl<F: Float> Arithmetic<F> {
    ///
    /// Variance of the sample
    ///
    /// Complexity: O(1)
    ///
    pub fn sample_variance(&self) -> F {
        let mean = self.sample_mean();
        (self.sum_sq - mean * self.sum) / F::from(self.count - 1).unwrap()
    }
    ///
    /// Standard deviation of the sample
    ///
    /// Complexity: O(1)
    ///
    pub fn sample_std_dev(&self) -> F {
        self.sample_variance().sqrt()
    }
}
impl<F: Float> StatisticsOps<F> for Arithmetic<F> {
    fn append(&mut self, x: F) -> CIResult<()> {
        utils::kahan_add(&mut self.sum, x, &mut self.sum_c);
        utils::kahan_add(&mut self.sum_sq, x * x, &mut self.sum_sq_c);
        self.count += 1;
        Ok(())
    }

    fn sample_mean(&self) -> F {
        self.sum / F::from(self.count).unwrap()
    }

    fn sample_sem(&self) -> F {
        self.sample_std_dev() / F::from(self.count - 1).unwrap().sqrt()
    }

    fn ci_mean(&self, confidence: Confidence) -> CIResult<Interval<F>> {
        let n = self.count as f64;
        let mean = self.sample_mean().try_f64("stats.mean")?;
        let std_dev = self.sample_std_dev().try_f64("stats.std_dev")?;
        let std_err_mean = std_dev / n.sqrt();
        let degrees_of_freedom = n - 1.;
        let (lo, hi) = stats::interval_bounds(confidence, mean, std_err_mean, degrees_of_freedom);
        let (lo, hi) = (F::from(lo).convert("lo")?, F::from(hi).convert("hi")?);
        match confidence {
            Confidence::TwoSided(_) => Interval::new(lo, hi).map_err(|e| e.into()),
            Confidence::UpperOneSided(_) => Ok(Interval::new_upper(lo)),
            Confidence::LowerOneSided(_) => Ok(Interval::new_lower(hi)),
        }
    }

    fn sample_count(&self) -> usize {
        self.count
    }
}

///
/// Represents the state of the computation of the harmonic mean.
/// This is a simple implementation that accumulates information about the samples, such as sum and sum of squares.
/// It is implemented as a wrapper around [`Arithmetic`] to compute the arithmetic mean of the reciprocals of the samples.
///
/// It is best used through the [`StatisticsOps`] trait.
///
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Harmonic<F: Float> {
    recip_space: Arithmetic<F>,
}
impl<F: Float> Default for Harmonic<F> {
    fn default() -> Self {
        Self {
            recip_space: Arithmetic::default(),
        }
    }
}
impl<F: Float> StatisticsOps<F> for Harmonic<F> {
    fn append(&mut self, x: F) -> CIResult<()> {
        if x <= F::zero() {
            return Err(error::CIError::NonPositiveValue(
                x.to_f64().unwrap_or(f64::NAN),
            ));
        }
        self.recip_space.append(F::one() / x)?;
        Ok(())
    }
    ///
    /// Harmonic mean of the sample
    ///
    fn sample_mean(&self) -> F {
        F::one() / self.recip_space.sample_mean()
    }
    ///
    /// Standard error of the harmonic mean
    ///
    /// # Reference
    ///
    /// * Nilan Noris. "The standard errors of the geometric and harmonic means and their application to index numbers." The Annals of Mathematical Statistics, 11(4):445-448, (Dec., 1940). [JSTOR](https://www.jstor.org/stable/2235727)
    ///
    fn sample_sem(&self) -> F {
        let harm_mean = self.sample_mean();
        let recip_std_dev = self.recip_space.sample_std_dev();
        harm_mean * harm_mean * recip_std_dev
            / F::from(self.recip_space.sample_count() - 1).unwrap().sqrt()
    }

    fn sample_count(&self) -> usize {
        self.recip_space.sample_count()
    }
    ///
    /// Confidence interval for the harmonic mean
    ///
    fn ci_mean(&self, confidence: Confidence) -> CIResult<Interval<F>> {
        let arith_ci = self.recip_space.ci_mean(confidence.flipped())?;
        let (lo, hi) = (F::one() / arith_ci.high_f(), F::one() / arith_ci.low_f());
        match confidence {
            Confidence::TwoSided(_) => Interval::new(lo, hi).map_err(|e| e.into()),
            Confidence::UpperOneSided(_) => Ok(Interval::new_upper(lo)),
            Confidence::LowerOneSided(_) => Ok(Interval::new_lower(hi)),
        }
    }
}

///
/// Represents the state of the computation of the geometric mean.
/// This is a simple implementation that accumulates information about the samples, such as sum and sum of squares.
/// It is implemented as a wrapper around [`Arithmetic`] to compute the arithmetic mean of the logarithms of the samples.
///
/// It is best used through the [`StatisticsOps`] trait.
///
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Geometric<F: Float> {
    log_space: Arithmetic<F>,
}
impl<F: Float> Default for Geometric<F> {
    fn default() -> Self {
        Self {
            log_space: Arithmetic::default(),
        }
    }
}
impl<F: Float> StatisticsOps<F> for Geometric<F> {
    fn append(&mut self, x: F) -> CIResult<()> {
        if x <= F::zero() {
            return Err(error::CIError::NonPositiveValue(
                x.to_f64().unwrap_or(f64::NAN),
            ));
        }
        self.log_space.append(x.ln())?;
        Ok(())
    }
    ///
    /// Geometric mean of the sample
    ///
    fn sample_mean(&self) -> F {
        self.log_space.sample_mean().exp()
    }
    ///
    /// Standard error of the geometric mean
    ///
    ///  # Reference
    ///
    /// * Nilan Noris. "The standard errors of the geometric and harmonic means and their application to index numbers." The Annals of Mathematical Statistics, 11(4):445-448, (Dec., 1940). [JSTOR](https://www.jstor.org/stable/2235727)
    ///
    fn sample_sem(&self) -> F {
        let geom_mean = self.sample_mean();
        let log_std_dev = self.log_space.sample_std_dev();
        geom_mean * log_std_dev / F::from(self.log_space.sample_count() - 1).unwrap().sqrt()
    }

    fn sample_count(&self) -> usize {
        self.log_space.sample_count()
    }
    ///
    /// Confidence interval for the geometric mean
    ///
    fn ci_mean(&self, confidence: Confidence) -> CIResult<Interval<F>> {
        let arith_ci = self.log_space.ci_mean(confidence)?;
        let (lo, hi) = (arith_ci.low_f().exp(), arith_ci.high_f().exp());
        match confidence {
            Confidence::TwoSided(_) => Interval::new(lo, hi).map_err(|e| e.into()),
            Confidence::UpperOneSided(_) => Ok(Interval::new_upper(lo)),
            Confidence::LowerOneSided(_) => Ok(Interval::new_lower(hi)),
        }
    }
}

///
/// Trait for computing confidence intervals on the mean of a sample.
///
/// It is superceded by the [`StatisticsOps`] trait which allows incremental statistics.
/// It is retained for backwards compatibility and will be deprecated in the future, as
/// it brings no advantage over [`StatisticsOps`] and is less flexible.
///
/// # Examples
///
/// ```
/// # fn test() -> stats_ci::CIResult<()> {
/// use stats_ci::*;
/// let data = [
///    82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
///    15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
///    71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
///    98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
///    49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
///    37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
/// ];
/// let confidence = Confidence::new_two_sided(0.95);
/// let ci = mean::Arithmetic::ci(confidence, data)?;
/// // arithmetic mean: 52.5
///
/// use num_traits::Float;
/// use assert_approx_eq::assert_approx_eq;
/// assert_approx_eq!(ci.low_f(), 41.6496, 1e-3);
/// assert_approx_eq!(ci.high_f(), 65.69, 1e-3);
/// # Ok(())
/// # }
/// ```
///
pub trait MeanCI<T: PartialOrd> {
    fn ci<I>(confidence: Confidence, data: I) -> CIResult<Interval<T>>
    where
        I: IntoIterator<Item = T>;
}

impl<F: Float, T: StatisticsOps<F>> MeanCI<F> for T {
    fn ci<I>(confidence: Confidence, data: I) -> CIResult<Interval<F>>
    where
        I: IntoIterator<Item = F>,
    {
        Self::from_iter(data)?.ci_mean(confidence)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use assert_approx_eq::assert_approx_eq;

    #[test]
    fn test_mean_ci() -> CIResult<()> {
        let data = [
            82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
            15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
            71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
            98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
            49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
            37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
        ];

        let confidence = Confidence::new_two_sided(0.95);
        let ci = Arithmetic::ci(confidence, data)?;
        // mean: 53.67
        // stddev: 28.097613040716798
        // reference values computed in python
        // [48.094823990767836, 59.24517600923217]
        // ```python
        // import numpy as np
        // import scipy.stats as st
        // st.t.interval(confidence=0.95, df=len(data)-1, loc=np.mean(data), scale=st.sem(data))
        // ```
        assert_approx_eq!(ci.low_f(), 48.094823990767836, 1e-8);
        assert_approx_eq!(ci.high_f(), 59.24517600923217, 1e-8);
        assert_approx_eq!(ci.low_f() + ci.high_f(), 2. * 53.67, 1e-8);

        let one_sided_ci = Arithmetic::ci(Confidence::UpperOneSided(0.975), data)?;
        assert_approx_eq!(one_sided_ci.low_f(), ci.low_f(), 1e-8);
        assert_eq!(one_sided_ci.high_f(), f64::INFINITY);

        let one_sided_ci = Arithmetic::ci(Confidence::LowerOneSided(0.975), data)?;
        assert_approx_eq!(one_sided_ci.high_f(), ci.high_f(), 1e-8);
        assert_eq!(one_sided_ci.low_f(), f64::NEG_INFINITY);

        let mut state = Arithmetic::default();
        state.extend(data.iter().copied())?;
        let ci = state.ci_mean(confidence)?;

        assert_approx_eq!(ci.low_f(), 48.094823990767836, 1e-8);
        assert_approx_eq!(ci.high_f(), 59.24517600923217, 1e-8);
        assert_approx_eq!(ci.low_f() + ci.high_f(), 2. * 53.67, 1e-8);

        let one_sided_ci = state.ci_mean(Confidence::UpperOneSided(0.975))?;
        assert_approx_eq!(one_sided_ci.low_f(), ci.low_f(), 1e-8);
        assert_eq!(one_sided_ci.high_f(), f64::INFINITY);

        let one_sided_ci = state.ci_mean(Confidence::LowerOneSided(0.975))?;
        assert_approx_eq!(one_sided_ci.high_f(), ci.high_f(), 1e-8);
        assert_eq!(one_sided_ci.low_f(), f64::NEG_INFINITY);

        Ok(())
    }

    #[test]
    fn test_geometric_ci() -> CIResult<()> {
        let data = [
            82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
            15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
            71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
            98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
            49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
            37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
        ];

        let confidence = Confidence::new_two_sided(0.95);
        let ci = Geometric::ci(confidence, data)?;
        // geometric mean: 43.7268032829256
        //
        // reference values computed in python:
        // in log space: (3.630483364286656, 3.9254391587458475)
        // [37.731050052224354, 50.67532768627392]
        assert_approx_eq!(ci.low_f(), 37.731050052224354, 1e-8);
        assert_approx_eq!(ci.high_f(), 50.67532768627392, 1e-8);

        let one_sided_ci = Geometric::ci(Confidence::UpperOneSided(0.975), data)?;
        assert_approx_eq!(one_sided_ci.low_f(), ci.low_f(), 1e-8);
        assert_eq!(one_sided_ci.high_f(), f64::INFINITY);

        let one_sided_ci = Geometric::ci(Confidence::LowerOneSided(0.975), data)?;
        assert_approx_eq!(one_sided_ci.high_f(), ci.high_f(), 1e-8);
        assert_eq!(one_sided_ci.low_f(), f64::NEG_INFINITY);

        let mut state = Geometric::default();
        state.extend(data.iter().copied())?;
        let ci = state.ci_mean(confidence)?;
        assert_approx_eq!(state.sample_mean(), 43.7268032829256, 1e-8);
        assert_approx_eq!(ci.low_f(), 37.731050052224354, 1e-8);
        assert_approx_eq!(ci.high_f(), 50.67532768627392, 1e-8);

        let one_sided_ci = state.ci_mean(Confidence::UpperOneSided(0.975))?;
        assert_approx_eq!(one_sided_ci.low_f(), ci.low_f(), 1e-8);
        assert_eq!(one_sided_ci.high_f(), f64::INFINITY);

        let one_sided_ci = state.ci_mean(Confidence::LowerOneSided(0.975))?;
        assert_approx_eq!(one_sided_ci.high_f(), ci.high_f(), 1e-8);
        assert_eq!(one_sided_ci.low_f(), f64::NEG_INFINITY);

        Ok(())
    }

    #[test]
    fn test_harmonic_ci() -> CIResult<()> {
        let data = [
            82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
            15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
            71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
            98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
            49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
            37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
        ];

        let confidence = Confidence::new_two_sided(0.95);
        let ci = Harmonic::ci(confidence, data)?;
        // harmonic mean: 30.031313156339586
        //
        // reference values computed in python:
        // in reciprocal space: (0.02424956057996111, 0.042347593849757906)
        // [41.237860649168255, 23.614092539657168]  (reversed by conversion to reciprocal space)
        assert_approx_eq!(ci.low_f(), 23.614092539657168, 1e-8);
        assert_approx_eq!(ci.high_f(), 41.237860649168255, 1e-8);

        let one_sided_ci = Harmonic::ci(Confidence::UpperOneSided(0.975), data)?;
        assert_approx_eq!(one_sided_ci.low_f(), ci.low_f(), 1e-8);
        assert_eq!(one_sided_ci.high_f(), f64::INFINITY);

        let one_sided_ci = Harmonic::ci(Confidence::LowerOneSided(0.975), data)?;
        assert_approx_eq!(one_sided_ci.high_f(), ci.high_f(), 1e-8);
        assert_eq!(one_sided_ci.low_f(), f64::NEG_INFINITY);

        let confidence = Confidence::new_two_sided(0.95);
        let data = [
            1.81600583, 0.07498389, 1.29092744, 0.62023863, 0.09345327, 1.94670997, 2.27687339,
            0.9251231, 1.78173864, 0.4391542, 1.36948099, 1.5191194, 0.42286756, 1.48463176,
            0.17621009, 2.31810064, 0.15633061, 2.55137878, 1.11043948, 1.35923319, 1.58385561,
            0.63431437, 0.49993148, 0.49168534, 0.11533354,
        ];
        let ci = Harmonic::ci(confidence, data)?;
        // harmonic mean: 0.38041820166550844
        //
        // reference values computed in python:
        // in reciprocal space: (1.1735238063066096, 4.083848080632111)
        // [0.8521343961033607, 0.2448670911003175]
        assert_approx_eq!(ci.low_f(), 0.2448670911003175, 1e-6);
        assert_approx_eq!(ci.high_f(), 0.8521343961033607, 1e-6);

        let mut state = Harmonic::default();
        state.extend(data.iter().copied())?;
        let ci = state.ci_mean(confidence)?;
        assert_approx_eq!(state.sample_mean(), 0.38041820166550844, 1e-8);
        assert_approx_eq!(ci.low_f(), 0.2448670911003175, 1e-6);
        assert_approx_eq!(ci.high_f(), 0.8521343961033607, 1e-6);

        Ok(())
    }
}