1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
//! Confidence intervals over the mean (arithmetic, geometric, harmonic) of a given sample.
//!
//! The calculations use Student's t distribution regardless of sample size.
//! This provides more conservative (and accurate intervals) than the normal distribution
//! when the number of samples is small, and asymptotically approaches the normal distribution
//! as the number of samples increases.
//!
//! # Examples
//!
//! Confidence intervals on the arithmetic mean of a sample:
//! ```
//! # fn test() -> stats_ci::CIResult<()> {
//! use stats_ci::*;
//! let data = [
//!     82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
//!     15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
//!     71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
//!     98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
//!     49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
//!     37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
//! ];
//! let confidence = Confidence::new_two_sided(0.95);
//! let ci = mean::Arithmetic::ci(confidence, data)?;
//! // mean: 53.67
//! // stddev: 28.097613040716798
//! // reference values computed in python
//! // [48.094823990767836, 59.24517600923217]
//! use num_traits::Float;
//! use assert_approx_eq::assert_approx_eq;
//! assert_approx_eq!(ci.low_f(), 48.094823990767836, 1e-6);
//! assert_approx_eq!(ci.high_f(), 59.24517600923217, 1e-6);
//! # Ok(())
//! # }
//! ```
//!
//! Confidence intervals on the geometric mean of a sample:
//! ```
//! # fn test() -> stats_ci::CIResult<()> {
//! # use stats_ci::*;
//! # let data = [
//! #    82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
//! #    15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
//! #    71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
//! #    98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
//! #    49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
//! #    37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
//! # ];
//! # let confidence = Confidence::new_two_sided(0.95);
//! let ci = mean::Geometric::ci(confidence, data)?;
//! // geometric mean: 43.7268032829256
//! // reference values computed in python:
//! // [37.731050052224354, 50.67532768627392]
//! # use num_traits::Float;
//! # use assert_approx_eq::assert_approx_eq;
//! assert_approx_eq!(ci.low_f(), 37.731050052224354, 1e-6);
//! assert_approx_eq!(ci.high_f(), 50.67532768627392, 1e-6);
//! # Ok(())
//! # }
//! ```
//!
//! Confidence intervals on the harmonic mean of a sample:
//! ```
//! # fn test() -> stats_ci::CIResult<()> {
//! # use stats_ci::*;
//! # let data = [
//! #     1.81600583, 0.07498389, 1.29092744, 0.62023863, 0.09345327, 1.94670997, 2.27687339,
//! #     0.9251231, 1.78173864, 0.4391542, 1.36948099, 1.5191194, 0.42286756, 1.48463176,
//! #     0.17621009, 2.31810064, 0.15633061, 2.55137878, 1.11043948, 1.35923319, 1.58385561,
//! #     0.63431437, 0.49993148, 0.49168534, 0.11533354,
//! # ];
//! # let confidence = Confidence::new_two_sided(0.95);
//! let ci = mean::Harmonic::ci(confidence, data.clone())?;
//! // harmonic mean: 0.38041820166550844
//! // reference values computed in python:
//! // [0.2448670911003175, 0.8521343961033607]
//! # use num_traits::Float;
//! # use assert_approx_eq::assert_approx_eq;
//! assert_approx_eq!(ci.low_f(), 0.2448670911003175, 1e-6);
//! assert_approx_eq!(ci.high_f(), 0.8521343961033607, 1e-6);
//! # Ok(())
//! # }
//! ```
//!
use super::*;
use crate::utils;

use error::*;
use num_traits::Float;

///
/// Trait for computing confidence intervals on the mean of a sample.
///
/// # Examples
///
/// ```
/// # fn test() -> stats_ci::CIResult<()> {
/// use stats_ci::*;
/// let data = [
///    82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
///    15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
///    71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
///    98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
///    49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
///    37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
/// ];
/// let confidence = Confidence::new_two_sided(0.95);
/// let ci = mean::Arithmetic::ci(confidence, data)?;
/// // arithmetic mean: 52.5
///
/// use num_traits::Float;
/// use assert_approx_eq::assert_approx_eq;
/// assert_approx_eq!(ci.low_f(), 41.6496, 1e-3);
/// assert_approx_eq!(ci.high_f(), 65.69, 1e-3);
/// # Ok(())
/// # }
/// ```
pub trait MeanCI<T: PartialOrd> {
    fn ci<I>(confidence: Confidence, data: I) -> CIResult<Interval<T>>
    where
        I: IntoIterator<Item = T>;
}

///
/// Computation for arithmetic mean.
///
pub struct Arithmetic;

impl<T: Float> MeanCI<T> for Arithmetic {
    fn ci<I>(confidence: Confidence, data: I) -> CIResult<Interval<T>>
    where
        I: IntoIterator<Item = T>,
    {
        ci_with_transforms(
            confidence,
            data,
            |x: &T| !x.is_nan() && !x.is_infinite(),
            |x| x,
            |x| x,
            false,
        )
    }
}

///
/// Computation for geometric mean.
///
pub struct Geometric;

impl<T: Float> MeanCI<T> for Geometric {
    fn ci<I>(confidence: Confidence, data: I) -> CIResult<Interval<T>>
    where
        I: IntoIterator<Item = T>,
    {
        ci_with_transforms(
            confidence,
            data,
            |x: &T| x.is_sign_positive() || !x.is_zero(),
            |x| x.ln(),
            |x| x.exp(),
            false,
        )
    }
}

///
/// Computation for harmonic mean.
///
pub struct Harmonic;

impl<T: Float> MeanCI<T> for Harmonic {
    fn ci<I>(confidence: Confidence, data: I) -> CIResult<Interval<T>>
    where
        I: IntoIterator<Item = T>,
    {
        ci_with_transforms(
            confidence,
            data,
            |x: &T| x.is_sign_positive() || !x.is_zero(),
            |x| x.recip(), // 1/x
            |x| x.recip(),
            true,
        )
    }
}

///
/// Compute the confidence interval for the mean of a sample,
/// applying validity and transformation functions to the sample data.
///
/// # Arguments
///
/// * `confidence` - the confidence level
/// * `data` - the sample data
/// * `f_valid` - a function to determine whether a value is valid
/// * `f_transform` - a function to transform a value before computing the mean
/// * `f_inverse` - the inverse function to transform the bounds of the confidence interval
/// * `flipped` - whether the confidence interval is flipped by the transformation (i.e. the lower bound is the upper bound)
///
/// # Errors
///
/// * `CIError::InvalidInputData` - if the sample data is empty or contains invalid values
/// * `CIError::InvalidTooFewSamples` - if the sample size is not sufficient
/// * `CIError::FloatConversionError` - if the conversion from `T` to `U` fails
///
fn ci_with_transforms<T: PartialOrd, U: Float, I, F, Finv, Fvalid>(
    confidence: Confidence,
    data: I,
    f_valid: Fvalid,
    f_transform: F,
    f_inverse: Finv,
    flipped: bool,
) -> CIResult<Interval<T>>
where
    I: IntoIterator<Item = T>,
    Fvalid: Fn(&T) -> bool,
    F: Fn(T) -> U,
    Finv: Fn(U) -> T,
{
    // iterate through the data and compute the sample size, mean, and standard deviation.
    // applies the validity and transformation functions to the data.
    let stats = utils::sample_len_mean_stddev_with_transform(data, f_valid, f_transform)?;

    // use the t-distribution regardless of the population size

    let mean = stats.mean.try_f64("stats.mean")?;
    let std_err_mean = (stats.std_dev / stats.n.sqrt()).try_f64("std_err_mean")?;
    let degrees_of_freedom = (stats.len - 1) as f64;
    let (lo, hi) = stats::interval_bounds(confidence, mean, std_err_mean, degrees_of_freedom);
    let (lo, hi) = if flipped { (hi, lo) } else { (lo, hi) };
    let lo = U::from(lo).convert("lo")?;
    let hi = U::from(hi).convert("hi")?;
    let (lo, hi) = (f_inverse(lo), f_inverse(hi));
    match confidence {
        Confidence::TwoSided(_) => Interval::new(lo, hi).map_err(|e| e.into()),
        Confidence::UpperOneSided(_) => Ok(Interval::new_upper(lo)),
        Confidence::LowerOneSided(_) => Ok(Interval::new_lower(hi)),
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use assert_approx_eq::assert_approx_eq;

    #[test]
    fn test_mean_ci() -> CIResult<()> {
        let data = [
            82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
            15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
            71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
            98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
            49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
            37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
        ];

        let confidence = Confidence::new_two_sided(0.95);
        let ci = Arithmetic::ci(confidence, data)?;
        // mean: 53.67
        // stddev: 28.097613040716798
        // reference values computed in python
        // [48.094823990767836, 59.24517600923217]
        // ```python
        // import numpy as np
        // import scipy.stats as st
        // st.t.interval(confidence=0.95, df=len(data)-1, loc=np.mean(data), scale=st.sem(data))
        // ```
        assert_approx_eq!(ci.low_f(), 48.094823990767836, 1e-8);
        assert_approx_eq!(ci.high_f(), 59.24517600923217, 1e-8);
        assert_approx_eq!(ci.low_f() + ci.high_f(), 2. * 53.67, 1e-8);

        let one_sided_ci = Arithmetic::ci(Confidence::UpperOneSided(0.975), data)?;
        assert_approx_eq!(one_sided_ci.low_f(), ci.low_f(), 1e-8);
        assert_eq!(one_sided_ci.high_f(), f64::INFINITY);

        let one_sided_ci = Arithmetic::ci(Confidence::LowerOneSided(0.975), data)?;
        assert_approx_eq!(one_sided_ci.high_f(), ci.high_f(), 1e-8);
        assert_eq!(one_sided_ci.low_f(), f64::NEG_INFINITY);

        Ok(())
    }

    #[test]
    fn test_geometric_ci() -> CIResult<()> {
        let data = [
            82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
            15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
            71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
            98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
            49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
            37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
        ];

        let confidence = Confidence::new_two_sided(0.95);
        let ci = Geometric::ci(confidence, data)?;
        // geometric mean: 43.7268032829256
        //
        // reference values computed in python:
        // in log space: (3.630483364286656, 3.9254391587458475)
        // [37.731050052224354, 50.67532768627392]
        assert_approx_eq!(ci.low_f(), 37.731050052224354, 1e-8);
        assert_approx_eq!(ci.high_f(), 50.67532768627392, 1e-8);

        let one_sided_ci = Geometric::ci(Confidence::UpperOneSided(0.975), data)?;
        assert_approx_eq!(one_sided_ci.low_f(), ci.low_f(), 1e-8);
        assert_eq!(one_sided_ci.high_f(), f64::INFINITY);

        let one_sided_ci = Geometric::ci(Confidence::LowerOneSided(0.975), data)?;
        assert_approx_eq!(one_sided_ci.high_f(), ci.high_f(), 1e-8);
        assert_eq!(one_sided_ci.low_f(), f64::NEG_INFINITY);

        Ok(())
    }

    #[test]
    fn test_harmonic_ci() -> CIResult<()> {
        let data = [
            82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
            15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
            71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
            98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
            49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
            37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
        ];

        let confidence = Confidence::new_two_sided(0.95);
        let ci = Harmonic::ci(confidence, data)?;
        // harmonic mean: 30.031313156339586
        //
        // reference values computed in python:
        // in reciprocal space: (0.02424956057996111, 0.042347593849757906)
        // [41.237860649168255, 23.614092539657168]  (reversed by conversion to reciprocal space)
        assert_approx_eq!(ci.low_f(), 23.614092539657168, 1e-8);
        assert_approx_eq!(ci.high_f(), 41.237860649168255, 1e-8);

        let one_sided_ci = Harmonic::ci(Confidence::UpperOneSided(0.975), data)?;
        assert_approx_eq!(one_sided_ci.low_f(), ci.low_f(), 1e-8);
        assert_eq!(one_sided_ci.high_f(), f64::INFINITY);

        let one_sided_ci = Harmonic::ci(Confidence::LowerOneSided(0.975), data)?;
        assert_approx_eq!(one_sided_ci.high_f(), ci.high_f(), 1e-8);
        assert_eq!(one_sided_ci.low_f(), f64::NEG_INFINITY);

        let confidence = Confidence::new_two_sided(0.95);
        let data = [
            1.81600583, 0.07498389, 1.29092744, 0.62023863, 0.09345327, 1.94670997, 2.27687339,
            0.9251231, 1.78173864, 0.4391542, 1.36948099, 1.5191194, 0.42286756, 1.48463176,
            0.17621009, 2.31810064, 0.15633061, 2.55137878, 1.11043948, 1.35923319, 1.58385561,
            0.63431437, 0.49993148, 0.49168534, 0.11533354,
        ];
        let ci = Harmonic::ci(confidence, data)?;
        // harmonic mean: 0.38041820166550844
        //
        // reference values computed in python:
        // in reciprocal space: (1.1735238063066096, 4.083848080632111)
        // [0.8521343961033607, 0.2448670911003175]
        assert_approx_eq!(ci.low_f(), 0.2448670911003175, 1e-6);
        assert_approx_eq!(ci.high_f(), 0.8521343961033607, 1e-6);

        Ok(())
    }
}