1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
//! Confidence intervals over the mean (arithmetic, geometric, harmonic) of a given sample.
//!
//! The calculations use Student's t distribution regardless of sample size.
//! This provides more conservative (and accurate intervals) than the normal distribution
//! when the number of samples is small, and asymptotically approaches the normal distribution
//! as the number of samples increases.
//!
//! # Examples
//!
//! Confidence intervals on the arithmetic mean of a sample:
//! ```
//! # fn test() -> stats_ci::CIResult<()> {
//! use stats_ci::*;
//! let data = [
//! 82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
//! 15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
//! 71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
//! 98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
//! 49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
//! 37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
//! ];
//! let confidence = Confidence::new_two_sided(0.95);
//! let ci = mean::Arithmetic::ci(confidence, data)?;
//! // mean: 53.67
//! // stddev: 28.097613040716798
//!
//! use num_traits::Float;
//! use assert_approx_eq::assert_approx_eq;
//! assert_approx_eq!(ci.low_f(), 41.6496, 1e-3);
//! assert_approx_eq!(ci.high_f(), 65.69, 1e-3);
//! # Ok(())
//! # }
//! ```
//!
//! Confidence intervals on the geometric mean of a sample:
//! ```
//! # fn test() -> stats_ci::CIResult<()> {
//! use stats_ci::*;
//! let data = [
//! 82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
//! 15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
//! 71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
//! 98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
//! 49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
//! 37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
//! ];
//! let confidence = Confidence::new_two_sided(0.95);
//! let ci = mean::Geometric::ci(confidence, data)?;
//! // geometric mean: 43.7268032829256
//!
//! use num_traits::Float;
//! use assert_approx_eq::assert_approx_eq;
//! assert_approx_eq!(ci.low_f(), 20.368, 1e-3);
//! assert_approx_eq!(ci.high_f(), 93.875, 1e-3);
//! # Ok(())
//! # }
//! ```
//!
//! Confidence intervals on the harmonic mean of a sample:
//! ```
//! # fn test() -> stats_ci::CIResult<()> {
//! use stats_ci::*;
//! let data = [
//! 1.81600583, 0.07498389, 1.29092744, 0.62023863, 0.09345327, 1.94670997, 2.27687339,
//! 0.9251231, 1.78173864, 0.4391542, 1.36948099, 1.5191194, 0.42286756, 1.48463176,
//! 0.17621009, 2.31810064, 0.15633061, 2.55137878, 1.11043948, 1.35923319, 1.58385561,
//! 0.63431437, 0.49993148, 0.49168534, 0.11533354,
//! ];
//! let confidence = Confidence::new_two_sided(0.95);
//! let ci = mean::Harmonic::ci(confidence, data.clone())?;
//! // harmonic mean: 0.38041820166550844
//!
//! use num_traits::Float;
//! use assert_approx_eq::assert_approx_eq;
//! assert_approx_eq!(ci.low_f(), 0.225, 1e-3);
//! assert_approx_eq!(ci.high_f(), 1.23, 1e-3);
//! # Ok(())
//! # }
//! ```
//!
use super::*;
use crate::stats::t_value;
use error::*;
use num_traits::Float;
///
/// Trait for computing confidence intervals on the mean of a sample.
///
/// # Examples
///
/// ```
/// # fn test() -> stats_ci::CIResult<()> {
/// use stats_ci::*;
/// let data = [
/// 82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
/// 15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
/// 71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
/// 98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
/// 49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
/// 37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
/// ];
/// let confidence = Confidence::new_two_sided(0.95);
/// let ci = mean::Arithmetic::ci(confidence, data)?;
/// // arithmetic mean: 52.5
///
/// use num_traits::Float;
/// use assert_approx_eq::assert_approx_eq;
/// assert_approx_eq!(ci.low_f(), 41.6496, 1e-3);
/// assert_approx_eq!(ci.high_f(), 65.69, 1e-3);
/// # Ok(())
/// # }
/// ```
pub trait MeanCI<T: PartialOrd> {
fn ci<I>(confidence: Confidence, data: I) -> CIResult<Interval<T>>
where
I: IntoIterator<Item = T>;
}
///
/// Computation for arithmetic mean.
///
pub struct Arithmetic;
impl<T: Float> MeanCI<T> for Arithmetic {
fn ci<I>(confidence: Confidence, data: I) -> CIResult<Interval<T>>
where
I: IntoIterator<Item = T>,
{
ci_with_transforms(
confidence,
data,
|x: &T| !x.is_nan() && !x.is_infinite(),
|x| x,
|x| x,
false,
)
}
}
///
/// Computation for geometric mean.
///
pub struct Geometric;
impl<T: Float> MeanCI<T> for Geometric {
fn ci<I>(confidence: Confidence, data: I) -> CIResult<Interval<T>>
where
I: IntoIterator<Item = T>,
{
ci_with_transforms(
confidence,
data,
|x: &T| x.is_sign_positive() || !x.is_zero(),
|x| x.ln(),
|x| x.exp(),
false,
)
}
}
///
/// Computation for harmonic mean.
///
pub struct Harmonic;
impl<T: Float> MeanCI<T> for Harmonic {
fn ci<I>(confidence: Confidence, data: I) -> CIResult<Interval<T>>
where
I: IntoIterator<Item = T>,
{
ci_with_transforms(
confidence,
data,
|x: &T| x.is_sign_positive() || !x.is_zero(),
|x| x.recip(), // 1/x
|x| x.recip(),
true,
)
}
}
///
/// compensated Kahan summation.
/// See <https://en.wikipedia.org/wiki/Kahan_summation_algorithm>
///
/// The function is meant to be called at each iteration of the summation,
/// with relevant variables managed externally
///
/// # Arguments
///
/// * `current_sum` - the current sum
/// * `x` - the next value to add to the sum
/// * `compensation` - the compensation term
///
fn kahan_add<T: Float>(current_sum: &mut T, x: T, compensation: &mut T) {
let sum = *current_sum;
let c = *compensation;
let y = x - c;
let t = sum + y;
*compensation = (t - sum) - y;
*current_sum = t;
}
///
/// Compute the confidence interval for the mean of a sample,
/// applying validity and transformation functions to the sample data.
///
/// # Arguments
///
/// * `confidence` - the confidence level
/// * `data` - the sample data
/// * `f_valid` - a function to determine whether a value is valid
/// * `f_transform` - a function to transform a value before computing the mean
/// * `f_inverse` - the inverse function to transform the bounds of the confidence interval
/// * `flipped` - whether the confidence interval is flipped by the transformation (i.e. the lower bound is the upper bound)
///
/// # Errors
///
/// * `CIError::InvalidInputData` - if the sample data is empty or contains invalid values
/// * `CIError::InvalidTooFewSamples` - if the sample size is not sufficient
/// * `CIError::FloatConversionError` - if the conversion from `T` to `U` fails
///
fn ci_with_transforms<T: PartialOrd, U: Float, I, F, Finv, Fvalid>(
confidence: Confidence,
data: I,
f_valid: Fvalid,
f_transform: F,
f_inverse: Finv,
flipped: bool,
) -> CIResult<Interval<T>>
where
I: IntoIterator<Item = T>,
Fvalid: Fn(&T) -> bool,
F: Fn(T) -> U,
Finv: Fn(U) -> T,
{
let mut sum = U::zero();
let mut sum_c = U::zero(); // compensation for Kahan summation
let mut sum_sq = U::zero();
let mut sum_sq_c = U::zero(); // compensation for Kahan summation
let mut population = 0_usize;
for x in data {
if !f_valid(&x) {
return Err(CIError::InvalidInputData);
}
let x_prime = f_transform(x);
kahan_add(&mut sum, x_prime, &mut sum_c);
kahan_add(&mut sum_sq, x_prime * x_prime, &mut sum_sq_c);
population += 1;
}
if population < 2 {
return Err(CIError::TooFewSamples(population));
}
// use the t-distribution regardless of the population size
let t_value = U::from(t_value(confidence, population - 1)).ok_or_else(|| {
CIError::FloatConversionError(format!(
"converting t-value into type {}",
std::any::type_name::<T>()
))
})?;
let n = U::from(population).ok_or_else(|| {
CIError::FloatConversionError(format!(
"converting population ({}) into type {}",
population,
std::any::type_name::<U>()
))
})?;
let mean = sum / n;
let variance = (sum_sq - mean * mean) / (n - U::one());
let std_dev = variance.sqrt();
let span = t_value * std_dev / n.sqrt();
match confidence {
Confidence::TwoSided(_) => {
let low = if !flipped {
f_inverse(mean - span)
} else {
f_inverse(mean + span)
};
let high = if !flipped {
f_inverse(mean + span)
} else {
f_inverse(mean - span)
};
Interval::new(low, high).map_err(|e| e.into())
}
Confidence::UpperOneSided(_) => {
let low = if !flipped {
f_inverse(mean - span)
} else {
f_inverse(mean + span)
};
Ok(Interval::new_upper(low))
}
Confidence::LowerOneSided(_) => {
let high = if !flipped {
f_inverse(mean + span)
} else {
f_inverse(mean - span)
};
Ok(Interval::new_lower(high))
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use assert_approx_eq::assert_approx_eq;
#[test]
fn test_mean_ci() -> CIResult<()> {
let confidence = Confidence::new_two_sided(0.95);
let data = [
82., 94., 68., 6., 39., 80., 10., 97., 34., 66., 62., 7., 39., 68., 93., 64., 10., 74.,
15., 34., 4., 48., 88., 94., 17., 99., 81., 37., 68., 66., 40., 23., 67., 72., 63.,
71., 18., 51., 65., 87., 12., 44., 89., 67., 28., 86., 62., 22., 90., 18., 50., 25.,
98., 24., 61., 62., 86., 100., 96., 27., 36., 82., 90., 55., 26., 38., 97., 73., 16.,
49., 23., 26., 55., 26., 3., 23., 47., 27., 58., 27., 97., 32., 29., 56., 28., 23.,
37., 72., 62., 77., 63., 100., 40., 84., 77., 39., 71., 61., 17., 77.,
];
let ci = Arithmetic::ci(confidence, data)?;
// mean: 53.67
// stddev: 28.097613040716798
assert_approx_eq!(ci.low_f(), 41.6496, 1e-3);
assert_approx_eq!(ci.high_f(), 65.69, 1e-3);
assert_approx_eq!(ci.low_f() + ci.high_f(), 2. * 53.67, 1e-3);
let ci2 = Arithmetic::ci(Confidence::UpperOneSided(0.975), data)?;
assert_approx_eq!(ci2.low_f(), ci.low_f(), 1e-3);
assert_eq!(ci2.high_f(), f64::INFINITY);
let ci2 = Arithmetic::ci(Confidence::LowerOneSided(0.975), data)?;
assert_approx_eq!(ci2.high_f(), ci.high_f(), 1e-3);
assert_eq!(ci2.low_f(), f64::NEG_INFINITY);
let ci = Harmonic::ci(confidence, data)?;
// harmonic mean: 30.031313156339586
assert_approx_eq!(ci.low_f(), 22.47, 1e-3);
assert_approx_eq!(ci.high_f(), 45.26, 1e-3);
let ci2 = Harmonic::ci(Confidence::UpperOneSided(0.975), data)?;
assert_approx_eq!(ci2.low_f(), ci.low_f(), 1e-6);
assert_eq!(ci2.high_f(), f64::INFINITY);
let ci2 = Harmonic::ci(Confidence::LowerOneSided(0.975), data)?;
assert_approx_eq!(ci2.high_f(), ci.high_f(), 1e-6);
assert_eq!(ci2.low_f(), f64::NEG_INFINITY);
let ci = Geometric::ci(confidence, data)?;
// geometric mean: 43.7268032829256
assert_approx_eq!(ci.low_f(), 20.368, 1e-3);
assert_approx_eq!(ci.high_f(), 93.875, 1e-3);
let ci2 = Geometric::ci(Confidence::UpperOneSided(0.975), data)?;
assert_approx_eq!(ci2.low_f(), ci.low_f(), 1e-3);
assert_eq!(ci2.high_f(), f64::INFINITY);
let ci2 = Geometric::ci(Confidence::LowerOneSided(0.975), data)?;
assert_approx_eq!(ci2.high_f(), ci.high_f(), 1e-3);
assert_eq!(ci2.low_f(), f64::NEG_INFINITY);
Ok(())
}
#[test]
fn test_harmonic_ci() {
let confidence = Confidence::new_two_sided(0.95);
let data = [
1.81600583, 0.07498389, 1.29092744, 0.62023863, 0.09345327, 1.94670997, 2.27687339,
0.9251231, 1.78173864, 0.4391542, 1.36948099, 1.5191194, 0.42286756, 1.48463176,
0.17621009, 2.31810064, 0.15633061, 2.55137878, 1.11043948, 1.35923319, 1.58385561,
0.63431437, 0.49993148, 0.49168534, 0.11533354,
];
let ci = Harmonic::ci(confidence, data).unwrap();
// harmonic mean: 0.38041820166550844
assert_approx_eq!(ci.low_f(), 0.225, 1e-3);
assert_approx_eq!(ci.high_f(), 1.23, 1e-3);
}
#[test]
fn test_kahan_add() {
type Float = f32;
let mut normal: Float = 0.;
let mut kahan: Float = 0.;
let mut kahan_c: Float = 0.;
let x = 0.1;
for _ in 0..50_000_000_usize {
normal += x;
kahan_add(&mut kahan, x, &mut kahan_c);
}
assert_approx_eq!(5_000_000., kahan, 1e-10);
assert!((5_000_000. - normal).abs() > 500_000.); // normal summation is not accurate for f32
}
}