1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
/// Interval over a partially ordered type (NB: floating point numbers are partially ordered because of `NaN`).
/// The interval is defined by its lower and upper bounds.
///
/// # Examples
///
/// ```
/// # use stats_ci::Interval;
/// let interval = Interval::new(0., 1.);
/// assert_eq!(interval.low().unwrap(), 0.);
/// assert_eq!(interval.high().unwrap(), 1.);
/// assert!(!interval.is_empty());
/// assert!(!interval.is_degenerate());
/// assert!(interval.is_concrete());
/// assert!(interval.contains(&0.5));
/// assert!(!interval.contains(&2.));
///
/// let interval2: Interval<_> = Interval::from(0..=10);
/// assert_eq!(interval2.low().unwrap(), 0);
/// assert_eq!(interval2.high().unwrap(), 10);
/// ```
#[derive(Debug, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum Interval<T> {
#[default]
Empty,
Degenerate(T),
Concrete {
left: T,
right: T,
},
}
impl<T: PartialOrd> Interval<T> {
///
/// Create a new interval from its left and right bounds for ordered types with equality.
///
/// # Examples
///
/// ```
/// # use stats_ci::Interval;
/// let interval = Interval::new(0., 1.);
/// assert_eq!(interval.low().unwrap(), 0.);
/// assert_eq!(interval.high().unwrap(), 1.);
/// assert!(!interval.is_empty());
/// let interval2 = Interval::new("A", "Z");
/// assert_eq!(interval2.low().unwrap(), "A");
/// assert_eq!(interval2.high().unwrap(), "Z");
/// let interval3 = Interval::new(0, 0_usize);
/// assert_eq!(interval3.low().unwrap(), 0);
/// assert_eq!(interval3.high().unwrap(), 0);
/// assert!(interval3.is_degenerate());
/// let interval4 = Interval::new(1, 0);
/// assert!(interval4.is_empty());
/// ```
pub fn new(low: T, high: T) -> Self {
if low > high {
Interval::Empty
} else if low == high {
Interval::Degenerate(low)
} else {
Interval::Concrete {
left: low,
right: high,
}
}
}
///
/// Test whether the interval contains a value.
///
pub fn contains(&self, x: &T) -> bool {
match self {
Interval::Empty => false,
Interval::Degenerate(y) => x == y,
Interval::Concrete {
left: low,
right: high,
} => low <= x && x <= high,
}
}
///
/// Test whether the interval intersects another interval.
///
pub fn intersects(&self, other: &Self) -> bool {
match (self, other) {
(Interval::Empty, _) | (_, Interval::Empty) => false,
(Interval::Degenerate(x), _) => other.contains(x),
(_, Interval::Degenerate(y)) => self.contains(y),
(
Interval::Concrete { left: x, right: y },
Interval::Concrete { left: a, right: b },
) => x <= b && a <= y,
}
}
///
/// Test whether the interval is included in another interval.
///
/// The inclusion is not strict, i.e. an interval is included in itself.
///
pub fn is_included_in(&self, other: &Self) -> bool {
other.includes(self)
}
///
/// Test whether the interval includes another interval.
///
/// The inclusion is not strict, i.e. an interval includes itself.
///
pub fn includes(&self, other: &Self) -> bool {
match (self, other) {
(Interval::Empty, _) | (_, Interval::Empty) => false,
(Interval::Degenerate(x), Interval::Degenerate(y)) => x == y,
(Interval::Degenerate(_), _) => false,
(_, Interval::Degenerate(y)) => self.contains(y),
(
Interval::Concrete { left: x, right: y },
Interval::Concrete { left: a, right: b },
) => x <= a && b <= y,
}
}
}
impl<T> Interval<T> {
///
/// Create a new interval from its left and right bounds for unordered types.
/// The function is unchecked and always results in a concrete interval.
/// NB: this function is not meant for ordered types; in particular for numerical types.
///
/// # Examples
///
/// ```
/// # use stats_ci::Interval;
/// #[derive(Debug)]
/// enum Directions { North, South, East, West};
/// let interval = Interval::new_unordered_unchecked(Directions::North, Directions::West);
/// assert!(matches!(interval.left().unwrap(), Directions::North));
/// assert!(matches!(interval.right().unwrap(), Directions::West));
/// assert!(!interval.is_empty());
/// assert!(!interval.is_degenerate());
/// assert!(interval.is_concrete());
/// let interval = Interval::new_unordered_unchecked(Directions::North, Directions::North);
/// // NB: the interval is not degenerate because the bounds equality is not checked
/// assert!(!interval.is_degenerate());
/// ```
///
pub fn new_unordered_unchecked(left: T, right: T) -> Self {
Interval::Concrete { left, right }
}
///
/// Test if the interval is empty.
///
pub fn is_empty(&self) -> bool {
matches!(self, Interval::Empty)
}
///
/// Test if the interval is degenerate, in the sense that it contains a single element.
///
pub fn is_degenerate(&self) -> bool {
matches!(self, Interval::Degenerate(_))
}
///
/// Test if the interval is concrete, in the sense that it contains at least two elements.
///
pub fn is_concrete(&self) -> bool {
matches!(self, Interval::Concrete { .. })
}
///
/// Get the left bound of the interval (if any).
///
pub fn left(&self) -> Option<&T> {
match self {
Interval::Empty => None,
Interval::Degenerate(x) => Some(x),
Interval::Concrete { left: low, .. } => Some(low),
}
}
///
/// Get the right bound of the interval (if any).
///
pub fn right(&self) -> Option<&T> {
match self {
Interval::Empty => None,
Interval::Degenerate(x) => Some(x),
Interval::Concrete { right: high, .. } => Some(high),
}
}
}
impl<T: PartialOrd + Clone> Interval<T> {
///
/// Get the lower bound of the interval (if any) for partially ordered types.
///
/// This function clones the bound. If cloning is an issue, use [`Self::low_as_ref()`] instead.
///
pub fn low(&self) -> Option<T> {
self.left().cloned()
}
///
/// Get the upper bound of the interval (if any) for partially ordered types.
///
/// This function clones the bound. If cloning is an issue, use [`Self::high_as_ref()`] instead.
///
pub fn high(&self) -> Option<T> {
self.right().cloned()
}
}
impl<T: PartialOrd> Interval<T> {
///
/// Get a reference to the lower bound of the interval (if any) for ordered types.
///
/// See also [`Self::low()`] if cloning is not an issue.
///
pub fn low_as_ref(&self) -> Option<&T> {
self.left()
}
///
/// Get a reference to the upper bound of the interval (if any) for ordered types.
///
/// See also [`Self::high()`] if cloning is not an issue.
///
pub fn high_as_ref(&self) -> Option<&T> {
self.right()
}
}
impl<T: PartialEq> Interval<T> {
///
/// Create a new interval from its left and right bounds for unordered types with equality.
///
/// # Examples
///
/// ```
/// # use stats_ci::Interval;
/// #[derive(Debug, PartialEq)]
/// enum Directions { North, South, East, West};
/// let interval = Interval::new_unordered(Directions::North, Directions::West);
/// assert_eq!(interval.left().unwrap(), &Directions::North);
/// assert_eq!(interval.right().unwrap(), &Directions::West);
/// assert!(!interval.is_empty());
/// assert!(!interval.is_degenerate());
/// assert!(interval.is_concrete());
/// let interval = Interval::new_unordered(Directions::North, Directions::North);
/// assert!(interval.is_degenerate());
/// ```
pub fn new_unordered(left: T, right: T) -> Self {
if left == right {
Interval::Degenerate(left)
} else {
Interval::Concrete { left, right }
}
}
}
impl<T: PartialOrd> From<(T, T)> for Interval<T> {
fn from((low, high): (T, T)) -> Self {
Interval::new(low, high)
}
}
impl<T: PartialOrd> From<(Option<T>, Option<T>)> for Interval<T> {
fn from((low, high): (Option<T>, Option<T>)) -> Self {
match (low, high) {
(Some(low), Some(high)) => Interval::new(low, high),
(Some(low), None) => Interval::Degenerate(low),
(None, Some(high)) => Interval::Degenerate(high),
(None, None) => Interval::Empty,
}
}
}
impl<T: PartialOrd + Clone> From<Interval<T>> for (Option<T>, Option<T>) {
fn from(interval: Interval<T>) -> Self {
match interval {
Interval::Empty => (None, None),
Interval::Degenerate(x) => (Some(x.clone()), Some(x)),
Interval::Concrete {
left: low,
right: high,
} => (Some(low), Some(high)),
}
}
}
impl<T: PartialOrd + Clone> From<Interval<T>> for Option<(T, T)> {
fn from(interval: Interval<T>) -> Self {
match interval {
Interval::Empty => None,
Interval::Degenerate(x) => Some((x.clone(), x)),
Interval::Concrete {
left: low,
right: high,
} => Some((low, high)),
}
}
}
use std::ops::RangeBounds;
use std::ops::RangeInclusive;
impl<T: Ord> From<RangeInclusive<T>> for Interval<T> {
fn from(range: RangeInclusive<T>) -> Self {
let (start, end) = range.into_inner();
Interval::new(start, end)
}
}
impl<T: PartialOrd> RangeBounds<T> for Interval<T> {
fn start_bound(&self) -> std::ops::Bound<&T> {
match self.left() {
Some(low) => std::ops::Bound::Included(low),
None => std::ops::Bound::Unbounded,
}
}
fn end_bound(&self) -> std::ops::Bound<&T> {
match self.right() {
Some(high) => std::ops::Bound::Excluded(high),
None => std::ops::Bound::Unbounded,
}
}
}
impl<T: std::ops::Sub<Output = T> + num_traits::Zero + Clone> Interval<T> {
pub fn width(&self) -> Option<T> {
match self {
Interval::Empty => None,
Interval::Degenerate(_) => Some(T::zero()),
Interval::Concrete {
left: low,
right: high,
} => Some(high.clone() - low.clone()),
}
}
}
impl<T: Clone> Clone for Interval<T> {
fn clone(&self) -> Self {
match self {
Interval::Empty => Interval::Empty,
Interval::Degenerate(x) => Interval::Degenerate(x.clone()),
Interval::Concrete {
left: low,
right: high,
} => Interval::Concrete {
left: low.clone(),
right: high.clone(),
},
}
}
}
impl<T: Copy> Copy for Interval<T> {}
use std::fmt::Display;
impl<T: Display> Display for Interval<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Empty => write!(f, "∅"),
Self::Degenerate(arg) => write!(f, "[{}]", arg),
Self::Concrete { left, right } => write!(f, "[{}, {}]", left, right),
}
}
}
use std::hash::Hash;
impl<T: Hash> Hash for Interval<T> {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
match self {
Interval::Empty => 0.hash(state),
Interval::Degenerate(x) => {
1.hash(state);
x.hash(state);
}
Interval::Concrete {
left: low,
right: high,
} => {
2.hash(state);
low.hash(state);
high.hash(state);
}
}
}
}
impl<T> AsRef<Self> for Interval<T> {
fn as_ref(&self) -> &Self {
self
}
}
impl<T: PartialOrd> PartialOrd for Interval<T> {
///
/// compare two intervals.
/// given two intervals `a` and `b`, `a < b` if and only if the upper bound of `a` is less than the lower bound of `b`.
/// recall that interval bounds are assumed inclusive.
///
/// # Examples
/// ```
/// # use std::cmp::Ordering;
/// # use stats_ci::Interval;
/// let a = Interval::new(0, 10);
/// let b = Interval::new(10, 20);
/// let c = Interval::new(11, 20);
/// let d = Interval::new(0, 10);
/// assert_eq!(a.partial_cmp(&b), None);
/// assert_eq!(a.partial_cmp(&c), Some(Ordering::Less));
/// assert_eq!(c.partial_cmp(&a), Some(Ordering::Greater));
/// assert_eq!(a.partial_cmp(&d), Some(Ordering::Equal));
/// ```
///
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
use std::cmp::Ordering::*;
match (self, other) {
(
Interval::Degenerate(y) | Interval::Concrete { right: y, .. },
Interval::Degenerate(a) | Interval::Concrete { left: a, .. },
) if y < a => Some(Less),
(
Interval::Degenerate(x) | Interval::Concrete { left: x, .. },
Interval::Degenerate(b) | Interval::Concrete { right: b, .. },
) if x > b => Some(Greater),
(xy, ab) if xy == ab => Some(Equal),
_ => None,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_interval() {
let interval = Interval::new(0., 1.);
assert_eq!(interval.low().unwrap(), 0.);
assert_eq!(interval.high().unwrap(), 1.);
assert!(!interval.is_empty());
assert!(!interval.is_degenerate());
assert!(interval.is_concrete());
assert!(interval.contains(&0.5));
assert!(!interval.contains(&2.));
}
#[test]
fn test_interval_from_range() {
let interval = Interval::from(0..=3);
assert_eq!(interval, Interval::new(0, 3));
assert_eq!(interval.low().unwrap(), 0);
assert_eq!(interval.high().unwrap(), 3);
assert!(!interval.is_empty());
assert!(!interval.is_degenerate());
assert!(interval.is_concrete());
assert!(interval.contains(&1));
assert!(!interval.contains(&10));
}
#[test]
fn test_special_case() {
let interval = Interval::new(10, 10);
assert!(interval.is_degenerate());
assert_eq!(interval.low(), interval.high());
assert!(interval.contains(&10));
assert!(!interval.contains(&9));
assert!(!interval.contains(&11));
let interval = Interval::new(10, 8);
assert!(interval.is_empty());
assert_eq!(interval.low(), None);
assert_eq!(interval.high(), None);
assert!(!interval.contains(&8));
assert!(!interval.contains(&9));
assert!(!interval.contains(&10));
}
#[test]
fn test_interval_intersection() {
let interval1 = Interval::new(0, 10);
let interval2 = Interval::new(5, 15);
let interval3 = Interval::new(10, 20);
let interval4 = Interval::new(15, 25);
assert!(interval1.intersects(&interval2));
assert!(interval2.intersects(&interval1));
assert!(interval2.intersects(&interval3));
assert!(interval3.intersects(&interval2));
assert!(interval3.intersects(&interval4));
assert!(interval4.intersects(&interval3));
// intervals are assumed to be inclusive
assert!(interval1.intersects(&interval3));
assert!(interval3.intersects(&interval1));
assert!(!interval1.intersects(&interval4));
assert!(!interval4.intersects(&interval1));
}
#[test]
fn test_interval_equality() {
let interval1 = Interval::new(0, 10);
let interval2 = Interval::new(0, 10);
let interval3 = Interval::new(0, 11);
let interval4 = Interval::new(1, 10);
let interval5 = Interval::new(1, 11);
assert_eq!(interval1, interval2);
assert_ne!(interval1, interval3);
assert_ne!(interval1, interval4);
assert_ne!(interval1, interval5);
}
#[test]
fn test_width() {
let interval1 = Interval::new(0, 10);
let interval2 = Interval::new(0, 0);
let interval3 = Interval::new(0, -10);
let interval4 = Interval::new(-10, 0);
let interval5 = Interval::new(-10, -10);
assert_eq!(interval1.width(), Some(10));
assert_eq!(interval2.width(), Some(0));
assert_eq!(interval3.width(), None);
assert_eq!(interval4.width(), Some(10));
assert_eq!(interval5.width(), Some(0));
}
#[test]
fn test_send() {
fn assert_send<T: Send>() {}
assert_send::<Interval<f64>>();
}
#[test]
fn test_sync() {
fn assert_sync<T: Sync>() {}
assert_sync::<Interval<f64>>();
}
}