1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
//!
//! This module provides functions to compare two samples for two different cases.
//!
//! # Paired observations
//!
//! The first case is when the two samples are paired, i.e. each measurement in the first sample is paired with a measurement in the second sample.
//! For instance, when measuring the performance of two algorithms, the same input data is used for both algorithms to yield a pair of related observations.
//! Obviously, the number of observations in the two samples must be the same.
//! When possible, paired observations are preferred because they significantly reduce the variance of the difference between the two means.
//! This means that fewer observations are needed to achieve the same significance.
//!
//! The structure [`Paired`] deals with paired observations and can be used in simple form through the function [`Paired::ci`] or incrementally
//! with the function [`Paired::ci_mean`].
//!
//! # Unpaired observations
//!
//! The second case is when the two samples are not paired, i.e. each measurement in the first sample is not paired with a measurement in the second sample.
//! The number of observations in the two samples may be different.
//!
//! The structure [`Unpaired`] deals with the case of unpaired observations and can be used in simple form through the function [`Unpaired::ci`]
//! or incrementally with the function [`Unpaired::ci_mean`].
//!
//! # Examples
//!
//! ## Paired observations
//!
//! The examples below have the following preamble:
//! ```
//! use stats_ci::*;
//! // Zinc concentration in water samples from a river
//! let data_bottom_water = [
//!    0.430, 0.266, 0.567, 0.531, 0.707, 0.716, 0.651, 0.589, 0.469, 0.723,
//! ];
//! let data_surface_water = [
//!   0.415, 0.238, 0.390, 0.410, 0.605, 0.609, 0.632, 0.523, 0.411, 0.612,
//! ];
//! let confidence = Confidence::new_two_sided(0.95);
//! ```
//!
//! ### Easy interface (paired)
//! ```
//! # use stats_ci::*;
//! # // Zinc concentration in water samples from a river
//! # let data_bottom_water = [
//! #    0.430, 0.266, 0.567, 0.531, 0.707, 0.716, 0.651, 0.589, 0.469, 0.723,
//! # ];
//! # let data_surface_water = [
//! #   0.415, 0.238, 0.390, 0.410, 0.605, 0.609, 0.632, 0.523, 0.411, 0.612,
//! # ];
//! # let confidence = Confidence::new_two_sided(0.95);
//! let ci = comparison::Paired::ci(
//!     confidence,
//!     &data_bottom_water,
//!     &data_surface_water
//! )?;
//! # Ok::<(),error::CIError>(())
//! ```
//!
//! ### Incremental interface (paired)
//! ```
//! # use stats_ci::*;
//! # let data_bottom_water = [
//! #    0.430, 0.266, 0.567, 0.531, 0.707, 0.716, 0.651, 0.589, 0.469, 0.723,
//! # ];
//! # let data_surface_water = [
//! #   0.415, 0.238, 0.390, 0.410, 0.605, 0.609, 0.632, 0.523, 0.411, 0.612,
//! # ];
//! # let confidence = Confidence::new_two_sided(0.95);
//! let mut stats = comparison::Paired::default();
//! stats.extend(data_bottom_water, data_surface_water)?;
//! let ci = stats.ci_mean(confidence)?;
//! let mean = stats.sample_mean();
//! # Ok::<(),error::CIError>(())
//! ```
//!
//! ## Unpaired observations
//!
//! The examples below have the following preamble:
//! ```
//! # use stats_ci::*;
//! // Gain in weight of 19 female rats between 28 and 84 days after birth.
//! // 12 were fed on a high protein diet and 7 on a low protein diet.
//! let data_high_protein = [
//!     134., 146., 104., 119., 124., 161., 107., 83., 113., 129., 97., 123.,
//! ];
//! let data_low_protein = [70., 118., 101., 85., 107., 132., 94.];
//! let confidence = Confidence::new_two_sided(0.95);
//! ```
//!
//! ### Easy interface (unpaired)
//! ```
//! # use stats_ci::*;
//! # // Gain in weight of 19 female rats between 28 and 84 days after birth.
//! # // 12 were fed on a high protein diet and 7 on a low protein diet.
//! # let data_high_protein = [
//! #     134., 146., 104., 119., 124., 161., 107., 83., 113., 129., 97., 123.,
//! # ];
//! # let data_low_protein = [70., 118., 101., 85., 107., 132., 94.];
//! let confidence = Confidence::new_two_sided(0.95);
//! let ci = comparison::Unpaired::ci(
//!     confidence,
//!     &data_high_protein,
//!     &data_low_protein
//! )?;
//! # Ok::<(),error::CIError>(())
//! ```
//!
//! ### Incremental interface (unpaired)
//! ```
//! # use stats_ci::*;
//! # let data_high_protein = [
//! #     134., 146., 104., 119., 124., 161., 107., 83., 113., 129., 97., 123.,
//! # ];
//! # let data_low_protein = [70., 118., 101., 85., 107., 132., 94.];
//! # let confidence = Confidence::new_two_sided(0.95);
//! let mut stats = comparison::Unpaired::default();
//! stats.extend(data_high_protein, data_low_protein)?;
//! let ci = stats.ci_mean(confidence)?;
//! # Ok::<(),error::CIError>(())
//! ```
//!
//! # References
//!
//! * R. Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991.
//! * [Wikipedia article on paired difference test](https://en.wikipedia.org/wiki/Paired_difference_test)
//! * PennState. Stat 500. Lesson 7: Comparing Two Population Parameters. [Online](https://online.stat.psu.edu/stat500/lesson/7)
//!
use crate::*;
use error::*;
use mean::StatisticsOps;
use num_traits::Float;

///
/// Structure to collect statistics on two paired samples.
///
/// Paired observations are when each measurement in the first sample is paired with
/// a measurement in the second sample.
/// For instance, when measuring the performance of two algorithms, the same input
/// data is used for both algorithms to yield a pair of related observations.
///
/// When observations cannot naturally be paired, the samples must be compared using
/// unpaired observations (see [`Unpaired`]). Typically, unpaired observations require
/// noticeably more observations to achieve the same statistical significance.
///
/// # Examples
///
/// The example below considers the zinc concentration in water samples from a river.
/// Each sample is taken at the same location, but one at the bottom of the river and
/// the other at the surface. Thus, those measurements are paired (bottom and surface).
/// See <https://online.stat.psu.edu/stat500/lesson/7/7.3/7.3.2> for details on this
/// example.
///
/// ```
/// # use stats_ci::*;
/// // Zinc concentration in water samples from a river
/// let data_bottom_water = [
///     0.430, 0.266, 0.567, 0.531, 0.707, 0.716, 0.651, 0.589, 0.469, 0.723,
/// ];
/// let data_surface_water = [
///     0.415, 0.238, 0.390, 0.410, 0.605, 0.609, 0.632, 0.523, 0.411, 0.612,
/// ];
///
/// let mut stats = comparison::Paired::default();
/// stats.extend(data_bottom_water, data_surface_water).unwrap();
/// let ci = stats.ci_mean(Confidence::new_two_sided(0.95)).unwrap();
/// ```
///
/// # References
///
/// * R. Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991.
/// * [Wikipedia article on paired difference test](https://en.wikipedia.org/wiki/Paired_difference_test)
/// * PennState. Stat 500. Lesson 7: Comparing Two Population Parameters. [Online](https://online.stat.psu.edu/stat500/lesson/7)

#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Paired<T: Float> {
    stats: mean::Arithmetic<T>,
}

impl<T: Float> Paired<T> {
    ///
    /// Add a pair of observations to the two samples.
    ///
    /// # Arguments
    ///
    /// * `data_a` - the observation for the first sample
    /// * `data_b` - the observation for the second sample
    ///
    /// # Errors
    ///
    /// * [`CIError::FloatConversionError`] - if the conversion to `T` fails
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let mut stats = comparison::Paired::default();
    /// stats.append_pair(1., 2.)?;
    /// # assert_eq!(stats.sample_count(), 1);
    /// # assert_eq!(stats.sample_mean(), -1.);
    /// # Ok::<(),error::CIError>(())
    /// ```
    pub fn append_pair(&mut self, data_a: T, data_b: T) -> CIResult<()> {
        self.stats.append(data_a - data_b)
    }

    ///
    /// Append multiple pairs of observations to the two samples.
    ///
    /// # Arguments
    ///
    /// * `iter` - an iterable collection of tuples to add to the data
    ///
    /// # Errors
    ///
    /// * [`CIError::FloatConversionError`] - if the conversion to `T` fails
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let mut stats = comparison::Paired::default();
    /// stats.extend_tuple([(1., 2.), (3., 4.)])?;
    /// # assert_eq!(stats.sample_count(), 2);
    /// # assert_eq!(stats.sample_mean(), -1.);
    /// # Ok::<(),error::CIError>(())
    /// ```
    pub fn extend_tuple<I>(&mut self, iter: I) -> CIResult<()>
    where
        I: IntoIterator<Item = (T, T)>,
    {
        self.stats.extend(iter.into_iter().map(|(x, y)| x - y))
    }

    ///
    /// Append multiple observations to the two samples.
    ///
    /// # Arguments
    ///
    /// * `data_a` - an iterable collection of observations for the first sample
    /// * `data_b` - an iterable collection of observations for the second sample
    ///
    /// # Errors
    ///
    /// * [`CIError::DifferentSampleSizes`] - if the two iterables have different lengths
    /// * [`CIError::FloatConversionError`] - if the conversion to `T` fails
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let mut stats = comparison::Paired::default();
    /// stats.extend([1., 3.], [2., 4.])?;
    /// # assert_eq!(stats.sample_count(), 2);
    /// # assert_eq!(stats.sample_mean(), -1.);
    /// # Ok::<(),error::CIError>(())
    /// ```
    pub fn extend<I1, I2>(&mut self, data_a: I1, data_b: I2) -> CIResult<()>
    where
        I1: IntoIterator<Item = T>,
        I2: IntoIterator<Item = T>,
    {
        let mut data_a = data_a.into_iter();
        let mut data_b = data_b.into_iter();
        let mut count = 0;
        loop {
            match (data_a.next(), data_b.next()) {
                (Some(x), Some(y)) => {
                    count += 1;
                    self.stats.append(x - y)?
                }
                (None, None) => return Ok(()),
                // returns error if iterables have different lengths
                (None, _) => {
                    return Err(CIError::DifferentSampleSizes(
                        count,
                        count + 1 + data_b.count(),
                    ))
                }
                (_, None) => {
                    return Err(CIError::DifferentSampleSizes(
                        count + 1 + data_a.count(),
                        count,
                    ))
                }
            }
        }
    }

    ///
    /// Return the sample mean of the difference between the two samples.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let data_a = [1., 2., 3.];
    /// let data_b = [4., 5., 6.];
    /// let mut stats = comparison::Paired::default();
    /// stats.extend(data_a, data_b)?;
    /// let mean = stats.sample_mean();
    /// assert_eq!(mean, -3.);
    /// # Ok::<(),error::CIError>(())
    /// ```
    pub fn sample_mean(&self) -> T {
        self.stats.sample_mean()
    }

    ///
    /// Return the standard error of the difference between the two samples.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let data_a = [1., 2., 3.];
    /// let data_b = [4., 5., 6.];
    /// let mut stats = comparison::Paired::default();
    /// stats.extend(data_a, data_b)?;
    /// let sem = stats.sample_sem();
    /// assert_eq!(sem, 0.);
    /// # Ok::<(),error::CIError>(())
    /// ```
    pub fn sample_sem(&self) -> T {
        self.stats.sample_sem()
    }

    ///
    /// Return the number of sample pairs.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let data_a = [1., 2., 3.];
    /// let data_b = [4., 5., 6.];
    /// let mut stats = comparison::Paired::default();
    /// stats.extend(data_a, data_b)?;
    /// let count = stats.sample_count();
    /// assert_eq!(count, 3);
    /// # Ok::<(),error::CIError>(())
    /// ```
    ///
    pub fn sample_count(&self) -> usize {
        self.stats.sample_count()
    }

    ///
    /// Return the confidence interval of the difference between the means of the two samples.
    ///
    /// # Arguments
    ///
    /// * `confidence` - the confidence level
    ///
    /// # Returns
    ///
    /// The confidence interval of the difference as a result.
    ///
    /// # Notes
    ///
    /// If the interval includes zero, the difference is not significant.
    /// If the interval is strictly positive (resp. negative), the mean of the first sample is significantly
    /// greater (resp. smaller) than the mean of the second sample.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let data_a = [1., 2., 3.];
    /// let data_b = [4., 5., 6.];
    /// let mut stats = comparison::Paired::default();
    /// stats.extend(data_a, data_b)?;
    /// let confidence = Confidence::new_two_sided(0.95);
    /// let ci = stats.ci_mean(confidence)?;
    /// assert_eq!(ci, Interval::new(-3., -3.)?);
    /// # Ok::<(),error::CIError>(())
    /// ```
    pub fn ci_mean(&self, confidence: Confidence) -> CIResult<Interval<T>> {
        self.stats.ci_mean(confidence)
    }

    ///
    /// Compute the confidence interval of the difference between the means of the two samples.
    ///
    /// # Arguments
    ///
    /// * `confidence` - the confidence level
    /// * `data_a` - the first sample
    /// * `data_b` - the second sample
    ///
    /// # Returns
    ///
    /// The confidence interval of the difference as a result.
    ///
    /// # Errors
    ///
    /// * [`CIError::DifferentSampleSizes`] - if the two samples do not have the same length
    ///
    /// # Notes
    ///
    /// If the interval includes zero, the difference is not significant.
    /// If the interval is strictly positive (resp. negative), the mean of the first sample is significantly
    /// greater (resp. smaller) than the mean of the second sample.
    ///
    /// This function provides a simple interface to obtain the confidence interval with a single call, when
    /// the samples are known a priori and there is no need to include additional observations,
    /// obtain the confidence intervals for other levels or access the sample statistics. For more refined
    /// use cases, it is recommended to use [`Paired::ci_mean`] instead.
    ///
    /// # References
    ///
    /// * R. Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991.
    /// * [Wikipedia article on paired difference test](https://en.wikipedia.org/wiki/Paired_difference_test)
    /// * PennState. Stat 500. Lesson 7: Comparing Two Population Parameters. [Online](https://online.stat.psu.edu/stat500/lesson/7)
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let data_a = [1., 2., 3.];
    /// let data_b = [4., 5., 6.];
    /// let confidence = Confidence::new_two_sided(0.95);
    /// let ci = comparison::Paired::ci(confidence, &data_a, &data_b)?;
    /// # Ok::<(),error::CIError>(())
    /// ```
    ///
    pub fn ci(confidence: Confidence, data_a: &[T], data_b: &[T]) -> CIResult<Interval<T>> {
        let mut stats = Paired::default();
        stats.extend(data_a.iter().copied(), data_b.iter().copied())?;
        stats.ci_mean(confidence)
    }
}

impl<T: Float> Default for Paired<T> {
    fn default() -> Self {
        Self {
            stats: mean::Arithmetic::default(),
        }
    }
}

impl<F: Float> std::ops::Add for Paired<F> {
    type Output = Self;

    #[inline]
    fn add(self, rhs: Self) -> Self::Output {
        Self {
            stats: self.stats + rhs.stats,
        }
    }
}

impl<F: Float> std::ops::AddAssign for Paired<F> {
    #[inline]
    fn add_assign(&mut self, rhs: Self) {
        self.stats += rhs.stats;
    }
}

///
/// Structure to collect statistics on two unpaired samples.
///
/// Given two independent samples, the goal is to compute the confidence interval
/// of the difference between their means.
/// Unlike with paired observations ([`Paired`]), the two samples do not have to
/// have the same length.
/// However, comparing with unpaired observations typically requires considerably
/// more observations to reach the same degree of statistical accuracy. This is
/// why paired observations are preferred when the circumstances allow.
///
/// # Examples
///
/// ```
/// # use stats_ci::*;
/// // Gain in weight of 19 female rats between 28 and 84 days after birth.
/// // 12 were fed on a high protein diet and 7 on a low protein diet.
/// let data_high_protein = [
///     134., 146., 104., 119., 124., 161., 107., 83., 113., 129., 97., 123.,
/// ];
/// let data_low_protein = [70., 118., 101., 85., 107., 132., 94.];
/// let mut stats = comparison::Unpaired::default();
/// stats.extend(data_high_protein, data_low_protein)?;
/// let ci = stats.ci_mean(Confidence::new_two_sided(0.95))?;
/// # Ok::<(),error::CIError>(())
/// ```
///
/// # References
///
/// * R. Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991.
/// * [Wikipedia article on Student's t-test](https://en.wikipedia.org/wiki/Student%27s_t-test#Independent_two-sample_t-test)
/// * PennState. Stat 500. Lesson 7: Comparing Two Population Parameters. [Online](https://online.stat.psu.edu/stat500/lesson/7)
///
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Unpaired<T: Float> {
    stats_a: mean::Arithmetic<T>,
    stats_b: mean::Arithmetic<T>,
}

impl<T: Float> Default for Unpaired<T> {
    fn default() -> Self {
        Self {
            stats_a: mean::Arithmetic::default(),
            stats_b: mean::Arithmetic::default(),
        }
    }
}

impl<T: Float> Unpaired<T> {
    ///
    /// Create a new instance of `Unpaired` from two statistics.
    ///
    /// # Arguments
    ///
    /// * `stats_a` - the statistics of the first sample
    /// * `stats_b` - the statistics of the second sample
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let stats_a = mean::Arithmetic::from_iter([1., 2., 3.])?;
    /// let stats_b = mean::Arithmetic::from_iter([4., 5., 6.])?;
    /// let stats = comparison::Unpaired::new(stats_a, stats_b);
    /// # Ok::<(),error::CIError>(())
    /// ```
    pub fn new(stats_a: mean::Arithmetic<T>, stats_b: mean::Arithmetic<T>) -> Self {
        Self { stats_a, stats_b }
    }

    ///
    /// Create a new instance of `Unpaired` from two samples.
    ///
    /// # Arguments
    ///
    /// * `data_a` - the first sample
    /// * `data_b` - the second sample
    ///
    /// # Errors
    ///
    /// * [`CIError::FloatConversionError`] - if the conversion to `T` fails
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let stats = comparison::Unpaired::from_iter([1., 2., 3.], [4., 5., 6.])?;
    /// # Ok::<(),error::CIError>(())
    /// ```
    ///
    pub fn from_iter<Ia, Ib>(data_a: Ia, data_b: Ib) -> CIResult<Self>
    where
        Ia: IntoIterator<Item = T>,
        Ib: IntoIterator<Item = T>,
    {
        let mut stats = Self::default();
        stats.extend_a(data_a)?;
        stats.extend_b(data_b)?;
        Ok(stats)
    }

    ///
    /// Return a reference to the statistics of the first sample.
    ///
    pub fn stats_a(&self) -> &mean::Arithmetic<T> {
        &self.stats_a
    }

    ///
    /// Return a mutable reference to the statistics of the first sample.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let mut stats = comparison::Unpaired::default();
    /// stats.stats_a_mut().append(1.)?;
    /// # Ok::<(),error::CIError>(())
    /// ```
    ///
    pub fn stats_a_mut(&mut self) -> &mut mean::Arithmetic<T> {
        &mut self.stats_a
    }

    ///
    /// Return a reference to the statistics of the second sample.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// # let mut stats = comparison::Unpaired::from_iter([1., 2. ,3.], [4., 5., 6.])?;
    /// let mean_b = stats.stats_b().sample_mean();
    /// # Ok::<(),error::CIError>(())
    /// ```
    ///
    pub fn stats_b(&self) -> &mean::Arithmetic<T> {
        &self.stats_b
    }

    ///
    /// Return a mutable reference to the statistics of the second sample.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let mut stats = comparison::Unpaired::default();
    /// stats.stats_b_mut().append(1.)?;
    /// # Ok::<(),error::CIError>(())
    /// ```
    ///
    pub fn stats_b_mut(&mut self) -> &mut mean::Arithmetic<T> {
        &mut self.stats_b
    }

    ///
    /// Append a pair of observations to the two samples.
    ///
    /// # Arguments
    ///
    /// * `data_a` - the new data for the first sample
    /// * `data_b` - the new data for the second sample
    ///
    /// # Errors
    ///
    /// * [`CIError::FloatConversionError`] - if the conversion to `T` fails
    ///
    pub fn append_pair(&mut self, data_a: T, data_b: T) -> CIResult<()> {
        self.append_a(data_a)?;
        self.append_b(data_b)?;
        Ok(())
    }

    ///
    /// Append a single observation to the first sample.
    ///
    /// # Arguments
    ///
    /// * `data_a` - the new data for the first sample
    ///
    pub fn append_a(&mut self, data_a: T) -> CIResult<()> {
        self.stats_a.append(data_a)
    }

    ///
    /// Append a single observation to the second sample.
    ///
    /// # Arguments
    ///
    /// * `data_b` - the new data for the second sample
    ///
    pub fn append_b(&mut self, data_b: T) -> CIResult<()> {
        self.stats_b.append(data_b)
    }

    ///
    /// Append observations to the first sample.
    ///
    /// # Arguments
    ///
    /// * `data_a` - the new data for the first sample
    ///
    /// # Errors
    ///
    /// * [`CIError::FloatConversionError`] - if the conversion to `T` fails
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let mut stats = comparison::Unpaired::default();
    /// stats.extend_a([1., 2., 3.])?;
    /// # assert_eq!(stats.stats_a().sample_count(), 3);
    /// # assert_eq!(stats.stats_a().sample_mean(), 2.);
    /// # Ok::<(),error::CIError>(())
    /// ```
    pub fn extend_a(&mut self, data_a: impl IntoIterator<Item = T>) -> CIResult<()> {
        self.stats_a.extend(data_a)
    }

    ///
    /// Append observations to the second sample.
    ///
    /// # Arguments
    ///
    /// * `data_b` - the new data for the second sample
    ///
    /// # Errors
    ///
    /// * [`CIError::FloatConversionError`] - if the conversion to `T` fails
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let mut stats = comparison::Unpaired::default();
    /// stats.extend_b([1., 2., 3.])?;
    /// # assert_eq!(stats.stats_b().sample_count(), 3);
    /// # assert_eq!(stats.stats_b().sample_mean(), 2.);
    /// # Ok::<(),error::CIError>(())
    /// ```
    pub fn extend_b(&mut self, data_b: impl IntoIterator<Item = T>) -> CIResult<()> {
        self.stats_b.extend(data_b)
    }

    ///
    /// Extend the two samples with new data.
    ///
    /// # Arguments
    ///
    /// * `data_a` - the new data for the first sample
    /// * `data_b` - the new data for the second sample
    ///
    /// # Errors
    ///
    /// * [`CIError::FloatConversionError`] - if the conversion to `T` fails
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let mut stats = comparison::Unpaired::default();
    /// stats.extend([1., 2., 3.], [4., 5., 6.])?;
    /// # assert_eq!(stats.stats_a().sample_count(), 3);
    /// # assert_eq!(stats.stats_a().sample_mean(), 2.);
    /// # assert_eq!(stats.stats_b().sample_count(), 3);
    /// # assert_eq!(stats.stats_b().sample_mean(), 5.);
    /// # Ok::<(),error::CIError>(())
    /// ```
    pub fn extend<Ia, Ib>(&mut self, data_a: Ia, data_b: Ib) -> CIResult<()>
    where
        Ia: IntoIterator<Item = T>,
        Ib: IntoIterator<Item = T>,
    {
        self.stats_a.extend(data_a)?;
        self.stats_b.extend(data_b)?;
        Ok(())
    }

    ///
    /// Compute the confidence interval of the difference between the means of the two samples.
    ///
    /// # Arguments
    ///
    /// * `confidence` - the confidence level
    ///
    /// # Returns
    ///
    /// The confidence interval of the difference as a result.
    ///
    /// # Errors
    ///
    /// * [`CIError::TooFewSamples`] - if one of the two samples has less than 2 observations
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let confidence = Confidence::new_two_sided(0.95);
    /// let mut stats = comparison::Unpaired::default();
    /// stats.extend([1., 2., 3.], [4., 5., 6.])?;
    /// let ci = stats.ci_mean(confidence)?;
    /// # Ok::<(),error::CIError>(())
    /// ```
    ///
    /// # Notes
    ///
    /// If the interval includes zero, the difference is not significant.
    /// If the interval is strictly positive (resp. negative), the mean of the first sample is significantly
    /// greater (resp. smaller) than the mean of the second sample.
    ///
    /// # References
    ///
    /// * R. Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991.
    /// * [Wikipedia article on Student's t-test](https://en.wikipedia.org/wiki/Student%27s_t-test#Independent_two-sample_t-test)
    /// * PennState. Stat 500. Lesson 7: Comparing Two Population Parameters. [Online](https://online.stat.psu.edu/stat500/lesson/7)
    ///
    pub fn ci_mean(&self, confidence: Confidence) -> CIResult<Interval<T>> {
        let stats_a = self.stats_a;
        let stats_b = self.stats_b;

        let n_a = T::from(stats_a.sample_count()).convert("stats_a.sample_count")?;
        let n_b = T::from(stats_b.sample_count()).convert("stats_b.sample_count")?;
        let mean_a = stats_a.sample_mean();
        let mean_b = stats_b.sample_mean();
        let std_dev_a = stats_a.sample_std_dev();
        let std_dev_b = stats_b.sample_std_dev();

        let mean_difference = mean_a - mean_b;
        let sa2_na = // $s_a^2 / n_a$
            std_dev_a * std_dev_a / n_a;
        let sb2_nb = // $s_b^2 / n_b$
            std_dev_b * std_dev_b / n_b;
        let sum_s2_n = // $s_a^2 / n_a + s_b^2 / n_b$
            sa2_na + sb2_nb;
        let std_err_mean = // $\sqrt{s_a^2 / n_a + s_b^2 / n_b}$
            sum_s2_n.sqrt();
        let effective_dof = // $ \frac{ (s_a^a / n_a + s_b^2 / n_b)^2 }{ \frac{1}{n_a+1} \left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b+1} \left(\frac{s_b^2}{n_b}\right)^2 } - 2$
            sum_s2_n * sum_s2_n
                / (sa2_na * sa2_na / (n_a + T::one())
                    + sb2_nb * sb2_nb / (n_b + T::one())) - T::one() - T::one();

        let (lo, hi) = stats::interval_bounds(
            confidence,
            mean_difference.try_f64("mean_difference")?,
            std_err_mean.try_f64("std_err_mean")?,
            effective_dof.try_f64("effective_dof")?,
        );
        let lo = T::from(lo).convert("lo")?;
        let hi = T::from(hi).convert("hi")?;
        match confidence {
            Confidence::TwoSided(_) => Interval::new(lo, hi).map_err(|e| e.into()),
            Confidence::UpperOneSided(_) => Ok(Interval::new_upper(lo)),
            Confidence::LowerOneSided(_) => Ok(Interval::new_lower(hi)),
        }
    }

    ///
    /// Compute the confidence interval of the difference between the means of the two samples.
    ///
    /// # Arguments
    ///
    /// * `confidence` - the confidence level
    /// * `data_a` - the first sample
    /// * `data_b` - the second sample
    ///
    /// # Returns
    ///
    /// The confidence interval of the difference as a result.
    ///
    /// # Errors
    ///
    /// * [`CIError::FloatConversionError`] - if the conversion to `T` fails
    /// * [`CIError::TooFewSamples`] - if one of the two samples has less than 2 observations
    ///
    /// # Notes
    ///
    /// If the interval includes zero, the difference is not significant.
    /// If the interval is strictly positive (resp. negative), the mean of the first sample is significantly
    /// greater (resp. smaller) than the mean of the second sample.
    ///
    /// This function provides a simple interface to obtain the confidence interval with a single call, when
    /// the samples are known a priori and there is no need to include additional observations,
    /// obtain the confidence intervals for other levels or access the sample statistics. For more refined
    /// use cases, it is recommended to use [`Unpaired::ci_mean`] instead.
    ///
    /// # Examples
    ///
    /// ```
    /// # use stats_ci::*;
    /// let data_a = [1., 2., 3.];
    /// let data_b = [4., 5., 6.];
    /// let ci = comparison::Unpaired::ci(Confidence::new_two_sided(0.95), &data_a, &data_b)?;
    /// # Ok::<(),error::CIError>(())
    /// ```
    ///
    /// # References
    ///
    /// * R. Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991.
    /// * [Wikipedia article on Student's t-test](https://en.wikipedia.org/wiki/Student%27s_t-test#Independent_two-sample_t-test)
    /// * PennState. Stat 500. Lesson 7: Comparing Two Population Parameters. [Online](https://online.stat.psu.edu/stat500/lesson/7)
    ///
    pub fn ci(confidence: Confidence, data_a: &[T], data_b: &[T]) -> CIResult<Interval<T>> {
        let mut stats = Self::default();
        stats.extend(data_a.iter().copied(), data_b.iter().copied())?;
        stats.ci_mean(confidence)
    }
}

impl<F: Float> std::ops::Add for Unpaired<F> {
    type Output = Self;

    #[inline]
    fn add(self, rhs: Self) -> Self::Output {
        Self {
            stats_a: self.stats_a + rhs.stats_a,
            stats_b: self.stats_b + rhs.stats_b,
        }
    }
}

impl<F: Float> std::ops::AddAssign for Unpaired<F> {
    #[inline]
    fn add_assign(&mut self, rhs: Self) {
        self.stats_a += rhs.stats_a;
        self.stats_b += rhs.stats_b;
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::*;

    #[test]
    fn test_paired() {
        {
            // Case 1
            // based on example from https://online.stat.psu.edu/stat500/lesson/7/7.3/7.3.2

            // Zinc concentration in water samples from a river
            let data_bottom_water = [
                0.430, 0.266, 0.567, 0.531, 0.707, 0.716, 0.651, 0.589, 0.469, 0.723,
            ];
            let data_surface_water = [
                0.415, 0.238, 0.390, 0.410, 0.605, 0.609, 0.632, 0.523, 0.411, 0.612,
            ];

            let ci = Paired::ci(
                Confidence::new_two_sided(0.95),
                &data_bottom_water,
                &data_surface_water,
            )
            .unwrap();

            println!("ci = {} (ref: )", ci);
            println!("reference: (0.04299, 0.11781)");
            assert_abs_diff_eq!(ci, Interval::new(0.04299, 0.11781).unwrap(), epsilon = 1e-4);
        }
        {
            // Case 2
            // based on example from https://www.khanacademy.org/math/ap-statistics/xfb5d8e68:inference-quantitative-means/one-sample-t-interval-mean/a/one-sample-t-interval-paired-data

            let data_watch_a = [9.8, 9.8, 10.1, 10.1, 10.2];
            let data_watch_b = [10.1, 10., 10.2, 9.9, 10.1];
            let ci = Paired::ci(
                Confidence::new_two_sided(0.95),
                &data_watch_b,
                &data_watch_a,
            )
            .unwrap();

            println!("ci = {}", ci);
            println!("reference: (-0.20, 0.32)");
            assert_abs_diff_eq!(ci, Interval::new(-0.20, 0.32).unwrap(), epsilon = 1e-2);

            let data_pre = [140., 152., 153., 159., 150., 146.];
            let data_post = [150., 159., 170., 164., 148., 166.];
            let ci = Paired::ci(Confidence::new_two_sided(0.95), &data_post, &data_pre).unwrap();

            println!("ci = {}", ci);
            println!("reference: (1.03,17.97)");
            assert_abs_diff_eq!(ci, Interval::new(1.03, 17.97).unwrap(), epsilon = 1e-2);
        }
    }

    #[test]
    fn test_unpaired() {
        // based on example from https://www.statsdirect.co.uk/help/parametric_methods/utt.htm
        // itself based on Armitage P, Berry G. Statistical Methods in Medical Research (3rd edition). Blackwell 1994.
        // Consider the gain in weight of 19 female rats between 28 and 84 days after birth. 12 were fed on a high protein diet and 7 on a low protein diet.
        let data_high_protein = [
            134., 146., 104., 119., 124., 161., 107., 83., 113., 129., 97., 123.,
        ];
        let data_low_protein = [70., 118., 101., 85., 107., 132., 94.];
        let ci = Unpaired::ci(
            Confidence::new_two_sided(0.95),
            &data_high_protein,
            &data_low_protein,
        )
        .unwrap();

        println!("ci = {}", ci);
        println!("reference: (-2.193679, 40.193679)");
        assert_abs_diff_eq!(
            ci,
            Interval::new(-2.193679, 40.193679).unwrap(),
            epsilon = 1e-2
        );
    }

    #[test]
    fn test_paired_diff_length() {
        let sample_size = 10;
        let data1 = (0..sample_size)
            .map(|_| rand::random::<f64>())
            .collect::<Vec<_>>();
        let data2 = (0..sample_size + 1)
            .map(|_| rand::random::<f64>())
            .collect::<Vec<_>>();

        let mut stats = comparison::Paired::default();
        let res = stats.extend(data1, data2);
        assert!(res.is_err());
        match res.unwrap_err() {
            CIError::DifferentSampleSizes(a, b) => {
                println!("DifferentSampleSizes({a},{b})");
                assert_eq!(a, sample_size);
                assert_eq!(b, sample_size + 1);
            }
            e => panic!("unexpected error: {}", e),
        }
    }
}