Expand description
Provides the beta and related function
Functions§
- Computes the beta function where
ais the first beta parameter andbis the second beta parameter. - Computes the lower incomplete (unregularized) beta function
B(a,b,x) = int(t^(a-1)*(1-t)^(b-1),t=0..x)fora > 0, b > 0, 1 >= x >= 0whereais the first beta parameter,bis the second beta parameter, andxis the upper limit of the integral - Computes the regularized lower incomplete beta function
I_x(a,b) = 1/Beta(a,b) * int(t^(a-1)*(1-t)^(b-1), t=0..x)a > 0,b > 0,1 >= x >= 0whereais the first beta parameter,bis the second beta parameter, andxis the upper limit of the integral. - Computes the beta function where
ais the first beta parameter andbis the second beta parameter. - Computes the lower incomplete (unregularized) beta function
B(a,b,x) = int(t^(a-1)*(1-t)^(b-1),t=0..x)fora > 0, b > 0, 1 >= x >= 0whereais the first beta parameter,bis the second beta parameter, andxis the upper limit of the integral - Computes the regularized lower incomplete beta function
I_x(a,b) = 1/Beta(a,b) * int(t^(a-1)*(1-t)^(b-1), t=0..x)a > 0,b > 0,1 >= x >= 0whereais the first beta parameter,bis the second beta parameter, andxis the upper limit of the integral. - Computes the natural logarithm of the beta function where
ais the first beta parameter andbis the second beta parameter anda > 0,b > 0. - Computes the inverse of the regularized incomplete beta function
- Computes the natural logarithm of the beta function where
ais the first beta parameter andbis the second beta parameter anda > 0,b > 0.