1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
pub struct SampleStatistics {
pub sample_mean: f64,
pub standard_error: f64,
pub n: usize,
}
pub struct PopulationStatistics {
pub population_mean: f64,
pub standard_error: f64,
pub n: usize,
}
pub trait GetStatistics {
fn from_array(array: &[f64]) -> Self;
}
impl GetStatistics for SampleStatistics {
fn from_array(array: &[f64]) -> Self {
let n = array.len();
let sample_mean = mean(&array);
let standard_error = sample_standard_deviation(&array);
SampleStatistics {
sample_mean,
standard_error,
n,
}
}
}
impl GetStatistics for PopulationStatistics {
fn from_array(array: &[f64]) -> Self {
let n = array.len();
let population_mean = mean(&array);
let standard_error = population_standard_deviation(&array);
PopulationStatistics {
population_mean,
standard_error,
n,
}
}
}
pub struct Population {
pub population: [f64],
}
pub struct Sample {
pub sample: [f64],
}
trait StandDev {
fn standard_deviation(array: &[f64]) -> f64;
}
impl StandDev for Population {
fn standard_deviation(array: &[f64]) -> f64 {
let n = array.len();
let p_mean = mean(&array);
let mut sum = 0.0;
for xi in array.into_iter() {
sum += f64::powf(xi - p_mean, 2.0)
}
sum = sum / (n as f64);
sum.sqrt()
}
}
impl StandDev for Sample {
fn standard_deviation(array: &[f64]) -> f64 {
let n = array.len();
let s_mean = mean(&array);
let mut sum = 0.0;
for xi in array.into_iter() {
sum += f64::powf(xi - s_mean, 2.0)
}
sum = sum / (n as f64 - 1.0);
sum.sqrt()
}
}
pub fn mean(list: &[f64]) -> f64 {
let sum: f64 = Iterator::sum(list.iter());
f64::from(sum) / (list.len() as f64)
}
pub fn sample_standard_deviation(array: &[f64]) -> f64 {
let n = array.len();
let s_mean = mean(&array);
let mut sum = 0.0;
for xi in array.into_iter() {
sum += f64::powf(xi - s_mean, 2.0) as f64;
}
sum = sum / (n as f64 - 1.0);
sum.sqrt()
}
pub fn population_standard_deviation(array: &[f64]) -> f64 {
let n = array.len();
let p_mean = mean(&array);
let mut sum = 0.0;
for xi in array.into_iter() {
sum += f64::powf(xi - p_mean, 2.0) as f64;
}
sum = sum / (n as f64);
sum.sqrt()
}
pub struct TTestResult {
pub t: f64,
pub p_value: f64,
}
pub fn two_samp_t_test(samp_1: SampleStatistics, samp_2: SampleStatistics) -> TTestResult {
let mean_delta = samp_1.sample_mean - samp_2.sample_mean;
let stand =
(samp_1.standard_error / samp_1.n as f64) + (samp_2.standard_error / samp_2.n as f64);
let t = mean_delta / stand.sqrt();
let p_value: f64 = 0.05;
return TTestResult { t, p_value };
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn mean_test() {
assert!(mean(&[1.0]) == 1.0);
assert!(mean(&[1.0, 3.0]) == 2.0);
}
#[test]
fn sample_standard_deviation_test() {
assert_eq!(
sample_standard_deviation(&[1.0, 2.0, 3.0, 5.5, 7.7]),
2.73001831495688
);
assert_eq!(sample_standard_deviation(&[1.0, 2.0, 3.0]), 1.0);
}
#[test]
fn population_standard_deviation_test() {
assert_eq!(
population_standard_deviation(&[1.0, 2.0, 3.0, 5.5, 7.7]),
2.4418026128252057
);
assert_eq!(
population_standard_deviation(&[1.0, 2.0, 3.0]),
0.816496580927726
);
}
#[test]
fn pop_stats_from_array_test() {
let pop = PopulationStatistics::from_array(&[1.0, 5.5, 7.7, 8.9]);
assert_eq!(pop.n, 4);
assert_eq!(pop.standard_error, 3.0144443932506038);
assert_eq!(pop.population_mean, 5.775);
}
#[test]
fn samp_stats_from_array_test() {
let samp = SampleStatistics::from_array(&[1.0, 5.5, 7.7, 8.9]);
assert_eq!(samp.n, 4);
assert_eq!(samp.standard_error, 3.4807805638007885);
assert_eq!(samp.sample_mean, 5.775);
}
}