1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
//-------------------------------------------------------------------------
// @file utils.rs
//
// @date 06/02/20 11:06:12
// @author Martin Noblia
// @email mnoblia@disroot.org
//
// @brief
//
// @detail
//
// Licence MIT:
// Copyright <2020> <Martin Noblia>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.  THE SOFTWARE IS PROVIDED
// "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
// LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//-------------------------------------------------------------------------
use num::{Float};
use crate::matrix3x3::M33;
use crate::traits::LinearAlgebra;
use crate::matrix4x4::M44;
use crate::dual_quaternion::DualQuaternion;
// NOTE(elsuizo:2020-06-02): the following function
// is a translation of the implementation that is here:
// https://floating-point-gui.de/errors/comparison/
//
/// a comparison function for floating point values
///
pub fn nearly_equal<T: Float>(a: T, b: T, epsilon: T) -> bool {
    let abs_a = a.abs();
    let abs_b = b.abs();
    let abs_diff = (a - b).abs();
    let zero = T::zero();
    // short-cut, handles infinity
    if a == b { true }

    else if a == zero || b == zero || (abs_a + abs_b < T::min_value()) {
        // a or b is zero or both are extremely close to it
        // relative error is less meaningful here
        abs_diff < epsilon
    } else {
      abs_diff / T::min(abs_a + abs_b, T::max_value()) < epsilon
    }
}

pub fn nearly_zero<T: Float>(a: T) -> bool {
    nearly_equal(a, T::zero(), T::epsilon())
}

// TODO(elsuizo:2020-06-16): this is the only place when i use a Vec
/// utility function to compare vectors of Floats
pub fn compare_vecs<T: Float>(v1: &[T], v2: &[T], epsilon: T) -> bool {
    let v_result: Vec<bool> = v1
        .iter()
        .zip(v2)
        .map(|(a, b)| nearly_equal(*a, *b, epsilon))
        .collect();
    v_result.iter().all(|&x| x)
}

pub fn compare_floats<T: Float>(num1: T, num2: T, tol: T) -> bool {
    Float::abs(num1 - num2) < tol
}

/// utility function to verify if a Matrix is a propper rotation matrix
pub fn is_rotation<T: Float + std::iter::Sum>(r: M33<T>) -> bool {
    let r2 = r * r;
    if nearly_equal(r.det(), T::one(), T::epsilon()) && nearly_equal(r2.det(), T::one(), T::epsilon()) {
        true
    } else {
        false
    }
}

pub fn is_rotation_h<T: Float + std::iter::Sum>(r: M44<T>) -> bool {
    let r2 = r * r;
    let eps = T::from(1e-6).unwrap();
    if nearly_equal(r.det(), T::one(), eps) && nearly_equal(r2.det(), T::one(), eps) {
        true
    } else {
        false
    }
}

pub fn compare_dual_quaternions<T: Float>(a: DualQuaternion<T>, b: DualQuaternion<T>, epsilon: T) -> bool {
    nearly_equal(a.real().real(), b.real().real(), epsilon) &&
    nearly_equal(a.real().imag()[0], b.real().imag()[0], epsilon) &&
    nearly_equal(a.real().imag()[1], b.real().imag()[1], epsilon) &&
    nearly_equal(a.real().imag()[2], b.real().imag()[2], epsilon) &&

    nearly_equal(a.dual().real(),    b.dual().real(), epsilon) &&
    nearly_equal(a.dual().imag()[0], b.dual().imag()[0], epsilon) &&
    nearly_equal(a.dual().imag()[1], b.dual().imag()[1], epsilon) &&
    nearly_equal(a.dual().imag()[2], b.dual().imag()[2], epsilon)
}

//-------------------------------------------------------------------------
//                        tests
//-------------------------------------------------------------------------
#[cfg(test)]
mod test_utils {
    use super::*;
    #[test]
    fn test_nearly_equal() {
        let a = 0.15 + 0.15;
        let b = 0.1 + 0.2;
        assert_eq!(nearly_equal(a, b, 1e-10), true);
    }

    #[test]
    fn test_zero_signs() {
        let a = 0.0;
        let b = -0.0;
        assert_eq!(nearly_equal(a, b, 1e-10), true);
    }

    #[test]
    fn test_one_zero() {
        let b = -0.0000000005561918225744;
        let a = 0.0;
        assert_eq!(nearly_equal(a, b, 1e-8), true);
    }
}