1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#![allow(incomplete_features)]
#![feature(generic_const_exprs)]
#![feature(array_methods)]
#![feature(array_chunks)]
#![feature(adt_const_params)]
//! An extremely minimal super static type safe implementation of matrix types.
//!
//! While [`ndarray`](https://docs.rs/ndarray/latest/ndarray/) offers no compile time type checking
//!  on dimensionality and [`nalgebra`](https://docs.rs/nalgebra/latest/nalgebra/) offers some
//!  finnicky checking, this offers the maximum possible checking.
//!
//! When performing the addition of a [`MatrixDxS`] (a matrix with a known number of columns at
//!  compile time) and a [`MatrixSxD`] (a matrix with a known number of rows at compile time) you
//!  get a [`MatrixSxS`] (a matrix with a known number of rows and columns at compile time) since
//!  now both the number of rows and columns are known at compile time. This then allows this
//!  infomation to propagate through your program providing excellent compile time checking.
//!
//! That being said... I made this in a weekend and there is a tiny amount of functionality.
//!
//! *Note: Some examples may be ignored but all are tested, in rustdoc or in a plain test.*
//!
//! An example of how types will propagate through a program:
//! ```ignore
//! use static_la::*;
//! // MatrixSxS<i32,2,3>
//! let a = MatrixSxS::from([[1,2,3],[4,5,6]]);
//! // MatrixDxS<i32,3>
//! let b = MatrixDxS::from(vec![[2,2,2],[3,3,3]]);
//! // MatrixSxS<i32,2,3>
//! let c = (a.clone() + b.clone()) - a.clone();
//! // MatrixDxS<i32,3>
//! let d = c.add_rows(b);
//! // MatrixSxS<i32,4,3>
//! let e = MatrixSxS::from([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]);
//! // MatrixSxS<i32,4,6>
//! let f = d.add_columns(e);
//! ```
//!
//! In this example the only operations which cannot be fully checked at compile time are:
//! 1. `a.clone() + b.clone()`
//! 2. `d.add_columns(e)`
//!
//!
//! ### Construction
//! ```rust
//! use std::convert::TryFrom;
//! use static_la::*;
//! // From shaped arrays/vecs
//! let dxd = MatrixDxD::try_from(vec![vec![1, 2, 3], vec![4, 5, 6]]).unwrap();
//! let dxs = MatrixDxS::from(vec![[1, 2, 3], [4, 5, 6]]);
//! let sxd = MatrixSxD::try_from([vec![1, 2, 3], vec![4, 5, 6]]).unwrap();
//! let sxs = MatrixSxS::<i32,2,3>::from([[1, 2, 3], [4, 5, 6]]);
//! // From a given shape and array/vec
//! let dxd = MatrixDxD::try_from((2,3,vec![1, 2, 3, 4, 5, 6])).unwrap();
//! let dxs = MatrixDxS::<_,2>::try_from((3,vec![1, 2, 3,4, 5, 6])).unwrap();
//! let sxd = MatrixSxD::<_,3>::try_from((2,vec![1, 2, 3, 4, 5, 6])).unwrap();
//! let sxs = MatrixSxS::<_,2,3>::from([1, 2, 3, 4, 5, 6]);
//! // From a given shape and slice
//! let dxd = MatrixDxD::try_from((2,3,&[1, 2, 3, 4, 5, 6])).unwrap();
//! let dxs = MatrixDxS::<_,2>::try_from((3,&[1, 2, 3,4, 5, 6])).unwrap();
//! let sxd = MatrixSxD::<_,3>::try_from((2,&[1, 2, 3, 4, 5, 6])).unwrap();
//! let sxs = MatrixSxS::<_,2,3>::from(&[1, 2, 3, 4, 5, 6]);
//! // ┌───────┐
//! // │ 1 2 3 │
//! // │ 4 5 6 │
//! // └───────┘
//! // From a given shape and value
//! let dxd = MatrixDxD::from((2,3,5));
//! let dxs = MatrixDxS::<_,3>::from((2,5));
//! let sxd = MatrixSxD::<_,2>::from((3,5));
//! let sxs = MatrixSxS::<_,2,3>::from(5);
//! // ┌───────┐
//! // │ 5 5 5 │
//! // │ 5 5 5 │
//! // └───────┘
//! // From a given shape and with values sampled from a given distribution
//! use rand::distributions::{Uniform,Standard};
//! let dxd = MatrixDxD::<i32>::distribution(2,3,Uniform::from(0..10));
//! let dxs = MatrixDxS::<f32,3>::distribution(2,Standard);
//! let sxd = MatrixSxD::<f32,2>::distribution(3,Standard);
//! let sxs = MatrixSxS::<f32,2,3>::distribution(Standard);
//! ```
//! ### Indexing
//! ```
//! use static_la::MatrixDxS;
//! let a = MatrixDxS::from(vec![[1, 2, 3], [4, 5, 6]]);
//! assert_eq!(a[(0,0)], 1);
//! assert_eq!(a[(0,1)], 2);
//! assert_eq!(a[(0,2)], 3);
//! assert_eq!(a[(1,0)], 4);
//! assert_eq!(a[(1,1)], 5);
//! assert_eq!(a[(1,2)], 6);
//! ```
//! ### Expansion
//! ```ignore
//! use std::convert::TryFrom;
//! use static_la::*;
//! let a = MatrixDxD::try_from(vec![vec![1, 2]]).unwrap();
//! // ┌─────┐
//! // │ 1 2 │
//! // └─────┘
//! let b = a.add_rows(MatrixDxS::from(vec![[4, 5]]));
//! // ┌─────┐
//! // │ 1 2 │
//! // │ 4 5 │
//! // └─────┘
//! let c = b.add_columns(MatrixSxS::from([[3], [6]]));
//! // ┌───────┐
//! // │ 1 2 3 │
//! // │ 4 5 6 │
//! // └───────┘
//! assert_eq!(c,MatrixSxD::try_from([vec![1, 2, 3], vec![4, 5, 6]]).unwrap());
//! ```
//! ### Arithmetic
//! ```ignore
//! use std::convert::TryFrom;
//! use static_la::*;
//! let a = MatrixDxD::try_from(vec![vec![1, 2, 3], vec![4, 5, 6]]).unwrap();
//! let mut b = a + MatrixDxS::from(vec![[7, 8, 9], [10, 11, 12]]);
//! assert_eq!(b, MatrixDxS::from(vec![[8, 10, 12], [14, 16, 18]]));
//! b -= MatrixDxS::from(vec![[3, 6, 9], [12, 15, 18]]);
//! assert_eq!(b, MatrixDxS::from(vec![[5, 4, 3], [2, 1, 0]]));
//! let c = b * MatrixSxS::from([[2, 2, 2], [3, 3, 3]]);
//! assert_eq!(c, MatrixSxS::from([[10, 8, 6], [6, 3, 0]]));
//! ```
//! ### Slicing
//! ```ignore
//! use std::convert::TryFrom;
//! use static_la::*;
//! let a = MatrixDxD::try_from(vec![vec![1, 2, 3], vec![4, 5, 6]]).unwrap();
//! assert_eq!(a.slice_dxd((0..1, 0..2)), MatrixDxD::try_from(vec![vec![&1, &2]]).unwrap());
//! assert_eq!(a.slice_dxs::<{ 0..2 }>(0..1), MatrixDxS::from(vec![[&1, &2]]));
//! assert_eq!(a.slice_sxd::<{ 0..1 }>(0..2), MatrixSxD::try_from([vec![&1, &2]]).unwrap());
//! assert_eq!(a.slice_sxs::<{ 0..1 }, { 0..2 }>(), MatrixSxS::from([[&1, &2]]));
//! ```

/// [`std::ops::Add`] Arithmetic addition operations.
mod add;
/// [`std::ops::AddAssign`] Arithmetic addition operations.
mod add_assign;
/// Functionality to expand matrices.
mod add_rows;
pub use add_rows::AddRows;
/// Functionality to expand matrices.
mod add_columns;
pub use add_columns::AddColumns;
/// [`std::ops::Div`] Arithmetic division operations.
mod div;
/// [`std::ops::DivAssign`] Arithmetic division operations.
mod div_assign;
/// [`std::fmt::Display`] Format implementations.
mod fmt;
/// [`std::convert::From`] Value-to-value conversions.
mod from;
/// [`std::ops::Index`] Indexing operations.
mod index;
/// Iterations functionality.
mod iter;
/// Matrix multiplication functionality.
mod matmul;
pub use matmul::Matmul;
/// [`std::ops::Mul`] Arithmetic multiplication operations.
mod mul;
/// [`std::ops::MulAssign`] Arithmetic multiplication operations.
mod mul_assign;
/// [`std::cmp::PartialEq`] Partial equality comparison operations.
mod partial_eq;
/// Slicing functionality.
mod slice;
pub use slice::*;
/// Constructing matrices with random values functionality.
#[cfg(feature = "distribution")]
mod distribution;
/// [`std::ops::Sub`] Arithmetic subtraction operations.
mod sub;
/// [`std::ops::SubAssign`] Arithmetic subtraction operations.
mod sub_assign;
/// [`std::convert::TryFrom`] Fallible value-to-value conversions.
mod try_from;

use std::convert::TryFrom;

// Matrix types
// --------------------------------------------------
/// A `dynamic x dynamic` matrix where neither dimension is known at compile time.
/// ```
/// use std::convert::TryFrom;
/// let _ = static_la::MatrixDxD::try_from(vec![vec![1, 2, 3], vec![4, 5, 6]]).unwrap();
/// ```
#[derive(Eq, PartialEq, Debug, Clone)]
pub struct MatrixDxD<T> {
    /// Underlying data.
    data: Vec<T>,
    columns: usize,
    rows: usize,
}
impl<T> MatrixDxD<T> {
    /// Number of elements in matrix.
    pub fn len(&self) -> usize {
        self.data.len()
    }
    /// Number of columns.
    pub fn columns(&self) -> usize {
        self.columns
    }
    /// Number of rows.
    pub fn rows(&self) -> usize {
        self.rows
    }
}
impl<T: std::iter::Sum<T> + Clone> MatrixDxD<T> {
    /// Gets sum of all elements.
    pub fn sum(&self) -> T {
        self.data.iter().cloned().sum()
    }
    /// Gets the sum of each row.
    pub fn row_sum(&self) -> ColumnVectorD<T> {
        ColumnVectorD::from(
            self.data
                .chunks_exact(self.columns)
                .map(|r| [r.iter().cloned().sum()])
                .collect::<Vec<_>>(),
        )
    }
    /// Gets the sum of each column.
    pub fn column_sum(&self) -> RowVectorD<T> {
        RowVectorD::try_from([(0..self.columns)
            .map(|i| {
                self.data
                    .iter()
                    .skip(i)
                    .step_by(self.columns)
                    .cloned()
                    .sum()
            })
            .collect::<Vec<_>>()])
        .unwrap()
    }
}
/// A `dynamic x static` matrix where the columns dimension is known at compile time.
/// ```
/// let _ = static_la::MatrixDxS::from(vec![[1, 2, 3], [4, 5, 6]]);
/// ```
#[derive(Eq, PartialEq, Debug, Clone)]
pub struct MatrixDxS<T, const COLUMNS: usize> {
    /// Underlying data.
    data: Vec<T>,
    rows: usize,
}
impl<T, const COLUMNS: usize> MatrixDxS<T, COLUMNS> {
    /// Number of elements in matrix.
    pub fn len(&self) -> usize {
        self.data.len()
    }
    /// Number of columns.
    pub const fn columns(&self) -> usize {
        COLUMNS
    }
    /// Number of rows.
    pub fn rows(&self) -> usize {
        self.rows
    }
}
impl<T: std::iter::Sum<T> + Copy + Default + std::fmt::Debug, const COLUMNS: usize>
    MatrixDxS<T, COLUMNS>
where
    [(); 1 * COLUMNS]:,
{
    /// Gets sum of all elements.
    pub fn sum(&self) -> T {
        self.data.iter().cloned().sum()
    }
    /// Gets the sum of each row.
    pub fn row_sum(&self) -> ColumnVectorD<T> {
        ColumnVectorD::from(
            self.data
                .chunks_exact(COLUMNS)
                .map(|r| [r.iter().cloned().sum()])
                .collect::<Vec<_>>(),
        )
    }
    /// Gets the sum of each column.
    pub fn column_sum(&self) -> RowVectorS<T, COLUMNS> {
        // Will dropping the `Default` and `Copy` traits to use `try_into` affect performance?
        let mut sums: [T; COLUMNS] = [Default::default(); COLUMNS];
        for i in 0..COLUMNS {
            sums[i] = self.data.iter().skip(i).step_by(COLUMNS).cloned().sum();
        }
        RowVectorS::from([sums])
    }
}
/// A `static x dynamic` matrix where the rows dimension is known at compile time.
/// ```
/// use std::convert::TryFrom;
/// let _ = static_la::MatrixSxD::try_from([vec![1, 2, 3], vec![4, 5, 6]]).unwrap();
/// ```
#[derive(Eq, PartialEq, Debug, Clone)]
pub struct MatrixSxD<T, const ROWS: usize> {
    /// Underlying data.
    data: Vec<T>,
    columns: usize,
}
impl<T, const ROWS: usize> MatrixSxD<T, ROWS> {
    /// Number of elements in matrix.
    pub fn len(&self) -> usize {
        self.data.len()
    }
    /// Number of rows.
    pub const fn rows(&self) -> usize {
        ROWS
    }
    /// Number of columns.
    pub fn columns(&self) -> usize {
        self.columns
    }
}

impl<T: std::iter::Sum<T> + Copy + Default + std::fmt::Debug, const ROWS: usize> MatrixSxD<T, ROWS>
where
    [(); ROWS * 1]:,
{
    /// Gets sum of all elements.
    pub fn sum(&self) -> T {
        self.data.iter().cloned().sum()
    }
    /// Gets the sum of each row.
    pub fn row_sum(&self) -> ColumnVectorS<T, ROWS> {
        let mut sums: [[T; 1]; ROWS] = [[Default::default(); 1]; ROWS];
        for (i, row) in (0..ROWS).zip(self.data.chunks_exact(self.columns)) {
            sums[i][0] = row.iter().cloned().sum();
        }
        ColumnVectorS::from(sums)
    }
    /// Gets the sum of each column.
    pub fn column_sum(&self) -> RowVectorD<T> {
        RowVectorD::try_from([(0..self.columns)
            .map(|i| {
                self.data
                    .iter()
                    .skip(i)
                    .step_by(self.columns)
                    .cloned()
                    .sum()
            })
            .collect::<Vec<_>>()])
        .unwrap()
    }
}
/// A `static x static` matrix where both dimensions are known at compile time.
/// ```
/// let _ = static_la::MatrixSxS::<i32,2,3>::from([[1, 2, 3], [4, 5, 6]]);
/// ```
#[derive(Eq, PartialEq, Debug, Clone)]
pub struct MatrixSxS<T, const ROWS: usize, const COLUMNS: usize>
where
    [(); ROWS * COLUMNS]:,
{
    /// Underlying data.
    data: [T; ROWS * COLUMNS],
}
impl<T, const ROWS: usize, const COLUMNS: usize> MatrixSxS<T, ROWS, COLUMNS>
where
    [(); ROWS * COLUMNS]:,
{
    /// Number of elements in matrix.
    pub const fn len(&self) -> usize {
        ROWS * COLUMNS
    }
    /// Number of rows.
    pub const fn rows(&self) -> usize {
        ROWS
    }
    /// Number of columns.
    pub const fn columns(&self) -> usize {
        COLUMNS
    }
}
impl<
        T: std::iter::Sum<T> + Copy + Default + std::fmt::Debug,
        const ROWS: usize,
        const COLUMNS: usize,
    > MatrixSxS<T, ROWS, COLUMNS>
where
    [(); ROWS * COLUMNS]:,
    [(); ROWS * 1]:,
    [(); 1 * COLUMNS]:,
{
    /// Gets sum of all elements.
    pub fn sum(&self) -> T {
        self.data.iter().cloned().sum()
    }
    /// Gets the sum of each row.
    pub fn row_sum(&self) -> ColumnVectorS<T, ROWS> {
        let mut sums: [[T; 1]; ROWS] = [[Default::default(); 1]; ROWS];
        for (i, row) in (0..ROWS).zip(self.data.chunks_exact(COLUMNS)) {
            sums[i][0] = row.iter().cloned().sum();
        }
        ColumnVectorS::from(sums)
    }
    /// Gets the sum of each column.
    pub fn column_sum(&self) -> RowVectorS<T, COLUMNS> {
        let mut sums: [T; COLUMNS] = [Default::default(); COLUMNS];
        for i in 0..COLUMNS {
            sums[i] = self.data.iter().skip(i).step_by(COLUMNS).cloned().sum();
        }
        RowVectorS::from([sums])
    }
}
// Vector aliases
// --------------------------------------------------
/// A matrix with 1 column and a dynamic number of rows.
///
/// E.g.
/// ```text
/// ┌───┐
/// │ 1 │
/// │ 2 │
/// │ 3 │
/// └───┘
/// ```
pub type ColumnVectorD<T> = MatrixDxS<T, 1>;
/// A matrix with 1 column and a static number of rows.
///
/// E.g.
/// ```text
/// ┌───┐
/// │ 1 │
/// │ 2 │
/// │ 3 │
/// └───┘
/// ```
pub type ColumnVectorS<T, const ROWS: usize> = MatrixSxS<T, ROWS, 1>;
/// A matrix with 1 row and a dynamic number of columns.
///
/// E.g.
/// ```text
/// ┌───────┐
/// │ 1 2 3 │
/// └───────┘
/// ```
pub type RowVectorD<T> = MatrixSxD<T, 1>;
/// A matrix with 1 row and a static number of columns.
///
/// E.g.
/// ```text
/// ┌───────┐
/// │ 1 2 3 │
/// └───────┘
/// ```
pub type RowVectorS<T, const COLUMNS: usize> = MatrixSxS<T, 1, COLUMNS>;

// These tests performs the tests that are ignored in the rustdoc.
// They are ignored in rustdoc as they cause compiler errors.
#[cfg(test)]
mod tests {
    use crate::*;
    use std::convert::TryFrom;
    #[test]
    fn rustdoc1() {
        // MatrixSxS<i32,2,3>
        let a = MatrixSxS::from([[1, 2, 3], [4, 5, 6]]);
        // MatrixDxS<i32,3>
        let b = MatrixDxS::from(vec![[2, 2, 2], [3, 3, 3]]);
        // MatrixSxS<i32,2,3>
        let c = (a.clone() + b.clone()) - a.clone();
        // MatrixDxS<i32,3>
        let d = c.add_rows(b);
        // MatrixSxS<i32,4,3>
        let e = MatrixSxS::from([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]);
        // MatrixSxS<i32,4,6>
        let _f = d.add_columns(e);
    }
    #[test]
    fn rustdoc2() {
        let a = MatrixDxD::try_from(vec![vec![1, 2]]).unwrap();
        let b = a.add_rows(MatrixDxS::from(vec![[4, 5]]));
        let c = b.add_columns(MatrixSxS::from([[3], [6]]));
        assert_eq!(
            c,
            MatrixSxD::try_from([vec![1, 2, 3], vec![4, 5, 6]]).unwrap()
        );
    }
    #[test]
    fn rustdoc3() {
        let a = MatrixDxD::try_from(vec![vec![1, 2, 3], vec![4, 5, 6]]).unwrap();
        let mut b = a + MatrixDxS::from(vec![[7, 8, 9], [10, 11, 12]]);
        assert_eq!(b, MatrixDxS::from(vec![[8, 10, 12], [14, 16, 18]]));
        b -= MatrixDxS::from(vec![[3, 6, 9], [12, 15, 18]]);
        assert_eq!(b, MatrixDxS::from(vec![[5, 4, 3], [2, 1, 0]]));
        let c = b * MatrixSxS::from([[2, 2, 2], [3, 3, 3]]);
        assert_eq!(c, MatrixSxS::from([[10, 8, 6], [6, 3, 0]]));
    }
    #[test]
    fn rustdoc4() {
        let a = MatrixDxD::try_from(vec![vec![1, 2, 3], vec![4, 5, 6]]).unwrap();
        assert_eq!(
            a.slice_dxd((0..1, 0..2)),
            MatrixDxD::try_from(vec![vec![&1, &2]]).unwrap()
        );
        assert_eq!(
            a.slice_dxs::<{ 0..2 }>(0..1),
            MatrixDxS::from(vec![[&1, &2]])
        );
        assert_eq!(
            a.slice_sxd::<{ 0..1 }>(0..2),
            MatrixSxD::try_from([vec![&1, &2]]).unwrap()
        );
        assert_eq!(
            a.slice_sxs::<{ 0..1 }, { 0..2 }>(),
            MatrixSxS::from([[&1, &2]])
        );
    }
}