1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
// Copyright © 2023 Daniel Fox Franke
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

//! This crate provides a framework of traits for writing types that are generic
//! over ownership of their contents.
//! 
//! <div style="max-width: 20em; margin-left: auto; margin-right: auto;">
//! <img src="https://raw.githubusercontent.com/dfoxfranke/static-cow/10cffdd130d62af2ee0c437bc06500cfe8123417/static-cow/images/mascot.webp" alt="Mascot"/>
//! </div>
//! 
//! # API Overview
//! ## `ToOwning` and `IntoOwning`
//! [`ToOwning`] and [`IntoOwning`] are the most general traits provided by this
//! crate, and are the ones that you will implement on your own types.
//! `ToOwning` is a generalization of [`std::borrow::ToOwned`](ToOwned):
//! 
//! ```ignore
//! pub trait ToOwning<'o> {
//!     type Owning: 'o;
//!     fn to_owning(&self) -> Self::Owning;
//! }
//! ```
//! 
//! Unlike `ToOwned`, it doesn't require that `Owning: Borrow<Self>`. Hence
//! `ToOwning` represents a type that can be converted into some version of
//! itself which owns its contents,  but which does not necessarily let you get
//! a reference to the original borrowing type back out from the owning one.
//! 
//! The lifetime parameter `'o` is a bound on the lifetime of the *owning* type.
//! In most circumstances, this can be `'static`, unless the owning type still
//! contains some resources which are borrowed. Wherever you see a lifetime
//! parameter named `'o` anywhere in this crate documentation, you can mentally
//! substitute `'static` unless you are doing something very unusual.
//! 
//! `ToOwning` has a blanket implementation for `T where T : ToOwned + ?Sized`.
//! The blanket implementation does the obvious thing of letting `Owning =
//! Owned` and `to_owning = to_owned`.
//! 
//! [`IntoOwning`], then is self-explanatory from its declaration:
//! 
//! ```ignore
//! pub trait IntoOwning<'o>: ToOwning<'o> + Sized {
//!     fn into_owning(self) -> Self::Owning;
//! }
//! ```
//! 
//! `IntoOwning` has a blanket implementation for `T where T : Clone`, which
//! makes `into_owning` the identity function. Therefore, if your type already
//! implements [`Clone`], you get an `IntoOwning` implementation automatically.
//! If you implement `IntoOwning` manually, you cannot implement `Clone`.
//! 
//! User-defined types which implement `ToOwning` and `IntoOwning` generally
//! should just call `.to_owning()` and `.into_owning()` on each of their
//! fields. Eventually there will be derive macros for this, but I haven't
//! written them yet.
//! 
//! ## `StaticCow`
//! [`StaticCow`], this crate's namesake, is [`std::borrow::Cow`](Cow) lifted to
//! the type level. While `Cow` is an enum, `StaticCow` is a trait. While
//! `Cow::Borrowed` and `Cow::Owned` are enum variants, this crate's
//! [`Borrowed`] and [`Owned`] are tuple structs which implement `StaticCow` (so
//! also does `Cow`). So instead of having a struct with a field `field: Cow<'a,
//! B>`, where `B: ''o` (remember, think "usually `'static`" when you see `'o`),
//! you can declare that field as `field: S` and let `S` be a generic parameter
//! `S: StaticCow<'a, 'o, B>`. Then, wherever the ownedness of `S` is known at
//! compile-time, the compiler can generate an appropriately-specialized version
//! of the function.
//! 
//! Like `Cow`, `StaticCow` requires `B : ToOwned`, which allows it to have
//! `Deref<Target=B>` for a supertrait. `IntoOwning` is another supertrait of
//! `StaticCow`.
//! 
//! ## `Idempotent`
//! Using [`Idempotent`] as a bound allows you to be generic over types that
//! implement [`IntoOwning`] but not [`ToOwned`].
//!
//! [`StaticCow`]`<B>` has [`Deref`]`<Target=B>` as a supertrait, so you can do
//! anything with a `StaticCow<B>` that you can do with a `&B`. However, in
//! order to provide this supertrait, its implementations require that `B :
//! ToOwned` so that they can rely on having `B::Owned : Borrow<B>`.
//!
//! `Idempotent` has weaker requirements, so its capabilities are necessarily
//! weaker as well, and it does not inherit from `Deref`. [`ToOwning`]`<'o>`
//! places no constraints other than `'o` on `Owning`, which means that as far
//! as the type system is concerned, `.into_owning()` is just a completely
//! arbitrary conversion. So, you can't do anything useful with a type that
//! might be `T` or might be `T::Owning` but you don't know which, because they
//! don't promise to have any traits in common.
//!
//! `Idempotent` puts back just enough information that it can be a useful
//! bound:
//!
//! 1. It can give you either a `T` or a `T::Owning`, *and tells you which*.
//!
//! 2. It constrains `T` such that `T::Owning::Owning = T::Owning`. This means
//! that you can call `into_owning()` on it as many times as you please and it
//! can *still* give you either a `T` or a `T::Owning`.
//!
//! `Idempotent<T>` is implemented by [`Change`]`<T>`, which holds a `T`;
//! [`Keep`]`<T>`, which holds a `T::Owning`; and by [`ChangeOrKeep`]`<T>` which
//! might hold either, determined at runtime. Calling `.to_owning()` or
//! `.into_owning()` on an `Idempotent<T>` always gives a `Keep<T>`.
//! 
//! # Example
//! In this example, we'll implement a slice iterator which returns the slice's
//! elements in reverse. Initially, it'll borrow the slice and clone its
//! elements when returning them. But, it will implement [`IntoOwning`], so that
//! at any time during iteration you can change it into an iterator which owns a
//! [`Vec`](alloc::vec::Vec). It will then pop the elements it returns off the
//! end of the `Vec`, without cloning them.
//! 
//! For starters, we'll declare our flexible iterator:
//! ```ignore
//! struct FlexIter<'a, S, E> {
//!     inner: S,
//!     index: usize,
//!     _phantom: CowPhantom<'a, [E]>,
//! }
//! ```
//! 
//! `E` is the type of the slice's elements. And although the constraint doesn't
//! appear in the struct declaration, `S` will be an implementation of
//! `StaticCow<'a, 'o, [E]>`. Concretely, `S` will be either `Borrowed<'b,
//! [E]>`, which wraps a `&'b [E]`, or it will be `Owned<[E]>`, which wraps a
//! `Vec<E>`. `index` is one greater than the index of the next element we'll
//! return, and `_phantom` is a zero-sized object which has to be there to
//! satisfy the typechecker by having the parameters `'a` and `E` appear
//! somewhere in the struct's fields.
//! 
//! Now we'll create [`ToOwning`] and [`IntoOwning`] instances for `FlexIter`.
//! ```ignore
//! impl<'a, 'o, S, E> ToOwning<'o> for FlexIter<'a, S, E>
//! where
//!     S: ToOwning<'o>,
//!     E : 'o,
//! {
//!     type Owning = FlexIter<'o, S::Owning, E>;
//! 
//!     fn to_owning(&self) -> Self::Owning {
//!         FlexIter {
//!             inner: self.inner.to_owning(),
//!             index: self.index.to_owning(),
//!             _phantom: self._phantom.to_owning()
//!         }
//!     }
//! }
//! 
//! impl<'a, 'o, S, E> IntoOwning<'o> for FlexIter<'a, S, E>
//! where
//!     S: IntoOwning<'o>,
//!     E: 'o
//! {
//!     fn into_owning(self) -> Self::Owning {
//!         FlexIter {
//!             inner: self.inner.into_owning(),
//!             index: self.index.into_owning(),
//!             _phantom: self._phantom.into_owning()
//!         }
//!     }
//! }
//! ```
//! 
//! You can see that the method implementations are completely rote, but all
//! these lifetimes flying around may be confusing. `'o` is a lifetime bound on
//! `E`, the type of the slice's elements. If the elements are just data, say,
//! `u32`, then `'o` can be `'static`. But if we have a slice full of
//! references, say, `&'x u32`, then `'o` is bounded by `'x`. `'a` is a lifetime
//! bound on the slice we're iterating over. So, if what we're given is a `&'b
//! [E]`, then `'a` is bounded by `'b`. But once we call `to_owned()` on the
//! slice, which gives us a `Vec<E>`, now `'a` is bounded only by `'o`.
//! 
//! Thus we can understand the implementation constraints and the type
//! declaration for `Owning`. We need an `S` which implements `ToOwning<'o>`,
//! and an `E` which can live up to `'o`. Concretely, `S` will be `Borrowed<'a,
//! [E]>`, which is a transparent wrapper around `&'a [E]`. This type does in
//! fact implement `ToOwning<'o>`, handing us back an `Owned<'o, [E]>` which is
//! a transparent wrapper around `[E]::Owned`, i.e., `Vec<E>`.  Given that these
//! constraints are satisfied, we can turn a `FlexIter<'a, S, E>` into a
//! `FlexIter<'o, S::Owning, E>`. Concretely, supposing `E` is `u32` so `'o` is
//! `'static`, we can turn a `FlexIter<'a, Borrowed<'a, [u32]>, u32>` into a
//! `FlexIter<'static, Owned<'static, [u32]>, u32>`.
//! 
//! If you understood that, then you should have no problem understanding the
//! constructor for a borrowing `FlexIter`:
//!
//! ```ignore 
//! impl<'b, E> FlexIter<'b, Borrowed<'b, [E]>, E> {
//!     fn new(slice: &'b [E]) -> FlexIter<'b, Borrowed<'b, [E]>, E> {
//!         FlexIter {
//!             inner: Borrowed(slice),
//!             index: slice.len(),
//!             _phantom: CowPhantom::default(),
//!         }
//!     }
//! }
//! ```
//! 
//! And now we can implement `Iterator`:
//! 
//! ```ignore
//! impl<'a, 'o, S, E> Iterator for FlexIter<'a, S, E>
//! where
//!     E: 'o + Clone,
//!     S: StaticCow<'a, 'o, [E]>,
//! {
//!     type Item = E;

//!     fn next(&mut self) -> Option<Self::Item> {
//!         // This is here to show that we can also access `inner` generically
//!         // through its `Deref<Target=[E]>` implementation, without having to 
//!         // match on `mut_if_owned()`.
//!         assert!(self.index <= self.inner.len());
//!
//!         match self.inner.mut_if_owned() {
//!             // We're borrowing the slice, so we have to work inefficiently
//!             // by cloning its elements before we return them.
//!             MutIfOwned::Const(slice) => {
//!                 if self.index == 0 {
//!                     None
//!                 } else {
//!                     self.index -= 1;
//!                     Some(slice[self.index].clone())
//!                 }
//!             }
//!             // We own the slice as a `Vec`, so we can pop elements off of it
//!             // without cloning.
//!             MutIfOwned::Mut(vec) => {
//!                 // It's necessary to make sure we first truncate the vector
//!                 // to `index`, because we may have already started iterating
//!                 // before `.into_owned()` was called, and this may be our
//!                 // first time calling `.next()` since we took ownership. Of
//!                 // course we could have had our `into_owned` implementation
//!                 // do this instead of doing it here.
//!                 vec.truncate(self.index);
//!                 let ret = vec.pop()?;
//!                 self.index -= 1;
//!                 Some(ret)
//!             }
//!         }
//!     }
//! }
//! ```
//! 
//! And now let's see it in action:
//! 
//! ```ignore
//! fn main() {
//!     let numbers = vec![1, 2, 3, 4, 5];
//!     let mut borrowing_iter = FlexIter::new(numbers.borrow());
//!
//!     println!("Borrowing:");
//!     println!("{}", borrowing_iter.next().unwrap());
//!     println!("{}", borrowing_iter.next().unwrap());
//!
//!     let owning_iter = borrowing_iter.into_owning();
//!     std::mem::drop(numbers);
//!
//!     println!("Owning:");
//!     for item in owning_iter {
//!         println!("{}", item);
//!     }
//! }
//! ```
//! 
//! Running this, we get the expected result:
//! ```text
//! Borrowing:
//! 5
//! 4
//! Owning:
//! 3
//! 2
//! 1
//! ```
//! 
//! This example is also available as `examples/flex_iter.rs` in the sources of
//! this crate.

#![warn(missing_docs)]
#![no_std]
extern crate alloc;
use alloc::borrow::{Borrow, BorrowMut, Cow, ToOwned};
use core::marker::PhantomData;
use core::ops::{Deref, DerefMut};

///A generalization of [`ToOwned`].
///
/// `ToOwning` is weaker than `ToOwned` because there is no constraint of
/// `Owning : Borrow<Self>` as there is on `ToOwned::Owned`. Thus, `ToOwning`
/// represents a type which can be converted from a reference into a related
/// type that owns its contents, but unlike `ToOwned` doesn't necessarily let
/// you get a reference to the original type back out.
///
/// `ToOwning` has a blanket implementation for `T where T : ToOwned`, wherein
/// `Owning = Owned` and `to_owning = to_owned`. User-defined types which
/// implement `ToOwning` but not `ToOwned` typically should do so by calling
/// `.to_owning()` on all their fields.
///
/// `ToOwning's` lifetime parameter `'o` is the lifetime of the *owning* type.
/// In most circumstances this can be `'static`. This is only not the case if
/// you have a `ToOwning` implementation that takes ownership of only some of
/// its contents, while others continue to have constrained lifetime.
pub trait ToOwning<'o> {
    /// The resulting type after obtaining ownership of `self`'s contents.
    type Owning: 'o;
    /// Creates an object which owns its contents from one which borrows them.
    fn to_owning(&self) -> Self::Owning;
}

impl<'o, B> ToOwning<'o> for B
where
    B: ToOwned + ?Sized,
    B::Owned: 'o,
{
    type Owning = B::Owned;

    #[inline]
    fn to_owning(&self) -> Self::Owning {
        self.to_owned()
    }
}

/// A trait for types that can be converted into ones which own their contents.
///
/// `IntoOwning` has a blanket implementation for `T where T : Clone`, wherein
/// `into_owning` is the identity function. User-defined types which implement
/// `IntoOwning` but not [`Clone`] typically should do so by calling
/// `into_owning()` on all their fields.
pub trait IntoOwning<'o>: ToOwning<'o> + Sized {
    /// Converts an object which owns its contents into one which borrows them.
    fn into_owning(self) -> Self::Owning;
}

impl<'o, B> IntoOwning<'o> for B
where
    B: 'o + Clone,
{
    #[inline]
    fn into_owning(self) -> Self::Owning {
        self
    }
}

/// Trait for [`Cow`]-like types whose owned-ness might be known at
/// compile-time.
///
/// [`StaticCow`] is [`std::borrow::Cow`](Cow) lifted to the type level. While
/// `Cow` is an enum, `StaticCow` is a trait. While `Cow::Borrowed` and
/// `Cow::Owned` are enum variants, this crate's [`Borrowed`] and [`Owned`] are
/// tuple structs which implement `StaticCow` (so also does `Cow`). So instead
/// of having a struct with a field `field: Cow<'a, B>`, where `B: ''o`, you can
/// declare that field as `field: S` and let `S` be a generic parameter `S:
/// StaticCow<'a, 'o, B>`. Then, wherever the ownedness of `S` is known at
/// compile-time, the compiler can generate an appropriately-specialized version
/// of the function.
pub trait StaticCow<'a, 'o, B>: Deref<Target = B> + IntoOwning<'o>
where
    B: 'o + ToOwned + ?Sized,
{
    /// Returns either an immutable reference to an object that is borrowed, or
    /// a mutable reference to one which is owned.
    ///
    /// This method is useful if you are implementing an object that does not
    /// need to mutate its contents, but can implement optimizations if allowed
    /// to.
    ///
    /// [`Borrowed`]::`mut_if_owned()` always returns `MutIfOwned::Const(_)`,
    /// [`Owned`]::`mut_if_owned()` always returns `MutIfOwned::Mut(_)`, and
    /// both of these method implementations are compiled with
    /// `#[inline(always)]`. Therefore, if you have code that is generic over
    /// `StaticCow`, there is zero cost to calling `.mut_if_owned()` and
    /// matching on the result, because the dead branch will reliably be
    /// optimized out.
    fn mut_if_owned(&mut self) -> MutIfOwned<'_, B>;

    /// Returns true iff the data is owned, i.e. if `self.into_owning()` would
    /// be a no-op.
    fn is_owned(&self) -> bool;

    /// Returns true iff the data is borrowed, i.e. if `self.into_owning()`
    /// would clone it.
    fn is_borrowed(&self) -> bool {
        !self.is_owned()
    }

    /// Converts `self` into its dynamic equivalent as a [`Cow`].
    fn into_cow(self) -> Cow<'a, B>;

    /// Converts `self` into a `B::Owned`, cloning only if necessary.
    fn into_owned(self) -> B::Owned;
}

#[derive(Debug, PartialEq, Eq)]
/// Either an immutable reference to a borrowing object, or a mutable reference to
/// an owning one.
///
/// Returned by [`StaticCow::mut_if_owned`].
pub enum MutIfOwned<'a, B>
where
    B: ToOwned + ?Sized,
{
    /// An immutable reference to a borrowing object.
    Const(&'a B),
    /// A mutable reference to an owning object.
    Mut(&'a mut B::Owned),
}

/// A [`StaticCow`] implementation which wraps an immutable reference.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Borrowed<'b, B: ?Sized>(pub &'b B);

/// A [`StaticCow`] implementation which wraps an owned type.
//pub struct Owned<'o, B>(pub B::Owning) where B: ToOwning<'o> + ?Sized;
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub struct Owned<'o, B>(pub B::Owning)
where
    B: ToOwning<'o> + ?Sized;

impl<'b, B: ?Sized> AsRef<B> for Borrowed<'b, B> {
    fn as_ref(&self) -> &B {
        self.0
    }
}

impl<'b, B: ?Sized> Borrow<B> for Borrowed<'b, B> {
    fn borrow(&self) -> &B {
        self.0
    }
}

impl<'b, B: ?Sized> Deref for Borrowed<'b, B> {
    type Target = B;

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.0
    }
}

impl<'b, 'o, B> ToOwning<'o> for Borrowed<'b, B>
where
    B: 'o + ToOwning<'o> + ?Sized,
{
    type Owning = Owned<'o, B>;

    #[inline]
    fn to_owning(&self) -> Self::Owning {
        Owned(self.0.to_owning())
    }
}

impl<'b, 'o, B> IntoOwning<'o> for Borrowed<'b, B>
where
    B: 'o + ToOwning<'o> + ?Sized,
{
    #[inline]
    fn into_owning(self) -> Self::Owning {
        Owned(self.0.to_owning())
    }
}

impl<'b, 'o, B> StaticCow<'b, 'o, B> for Borrowed<'b, B>
where
    B: 'o + ToOwned + ?Sized,
{
    #[inline]
    fn is_owned(&self) -> bool {
        false
    }

    #[inline(always)]
    fn mut_if_owned(&mut self) -> MutIfOwned<'_, <Self as Deref>::Target> {
        MutIfOwned::Const(self.0)
    }
    #[inline]
    fn into_cow(self) -> Cow<'b, B> {
        Cow::Borrowed(self.0)
    }

    fn into_owned(self) -> B::Owned {
        self.0.to_owned()
    }
}

impl<'o, B> Deref for Owned<'o, B>
where
    B: ToOwning<'o> + ?Sized,
    B::Owning: Borrow<B>,
{
    type Target = B;

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.0.borrow()
    }
}

impl<'o, B> DerefMut for Owned<'o, B>
where
    B: ToOwning<'o> + ?Sized,
    B::Owning: BorrowMut<B>,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.0.borrow_mut()
    }
}

impl<'o, B> ToOwning<'o> for Owned<'o, B>
where
    B: 'o + ToOwning<'o> + ?Sized,
    B::Owning: Borrow<B>,
{
    type Owning = Self;

    #[inline]
    fn to_owning(&self) -> Self::Owning {
        Owned(self.0.borrow().to_owning())
    }
}

impl<'o, B> IntoOwning<'o> for Owned<'o, B>
where
    B: 'o + ToOwning<'o> + ?Sized,
    B::Owning: Borrow<B>,
{
    #[inline]
    fn into_owning(self) -> Self::Owning {
        self
    }
}

impl<'o, B> StaticCow<'o, 'o, B> for Owned<'o, B>
where
    B: 'o + ToOwned + ?Sized,
{
    #[inline]
    fn is_owned(&self) -> bool {
        true
    }

    #[inline(always)]
    fn mut_if_owned(&mut self) -> MutIfOwned<'_, B> {
        MutIfOwned::Mut(&mut self.0)
    }

    #[inline]
    fn into_cow(self) -> Cow<'o, B> {
        Cow::Owned(self.0)
    }

    #[inline]
    fn into_owned(self) -> <B as ToOwned>::Owned {
        self.0
    }
}

impl<'a, 'o, B> StaticCow<'a, 'o, B> for Cow<'a, B>
where
    'a: 'o,
    B: 'o + ToOwned + ?Sized,
{
    #[inline]
    fn is_owned(&self) -> bool {
        match self {
            Cow::Borrowed(_) => false,
            Cow::Owned(_) => true,
        }
    }

    #[inline]
    fn mut_if_owned(&mut self) -> MutIfOwned<'_, B> {
        match self {
            Cow::Borrowed(borrowed) => MutIfOwned::Const(*borrowed),
            Cow::Owned(owned) => MutIfOwned::Mut(owned),
        }
    }
    #[inline]
    fn into_cow(self) -> Cow<'a, B> {
        self
    }

    #[inline]
    fn into_owned(self) -> <B as ToOwned>::Owned {
        self.into_owned()
    }
}

/// A trait which guarantees `Self::Owning::Owning = Self::Owning`.
///
/// Using `Idempotent` as a bound allows you to be generic over types that
/// implement [`IntoOwning`] but not [`ToOwned`].
///
/// [`StaticCow`]`<B>` has [`Deref`]`<Target=B>` as a supertrait, so you can do
/// anything with a `StaticCow<B>` that you can do with a `&B`. However, in
/// order to provide this supertrait, its implementations require that `B :
/// ToOwned` so that they can rely on having `B::Owned : Borrow<B>`.
///
/// `Idempotent` has weaker requirements, so its capabilities are necessarily
/// weaker as well, and it does not inherit from `Deref`. [`ToOwning`]`<'o>`
/// places no constraints other than `'o` on `Owning`, which means that as far
/// as the type system is concerned, `.into_owning()` is just a completely
/// arbitrary conversion. So, you can't do anything useful with a type that
/// might be `T` or might be `T::Owning` but you don't know which, because they
/// don't promise to have any traits in common.
///
/// `Idempotent` puts back just enough information that it can be a useful
/// bound:
///
/// 1. It can give you either a `T` or a `T::Owning`, *and tells you which*.
///
/// 2. It constrains `T` such that `T::Owning::Owning = T::Owning`. This means
/// that you can call `into_owning()` on it as many times as you please and it
/// can *still* give you either a `T` or a `T::Owning`.
///
/// `Idempotent<T>` is implemented by [`Change`]`<T>`, which holds a `T`;
/// [`Keep`]`<T>`, which holds a `T::Owning`; and by [`ChangeOrKeep`]`<T>` which
/// might hold either, determined at runtime. Calling `.to_owning()` or
/// `.into_owning()` on an `Idempotent<T>` always gives a `Keep<T>`.
pub trait Idempotent<'o, T>: 'o + IntoOwning<'o, Owning = Keep<'o, T>>
where
    T: ToOwning<'o>,
    T::Owning: ToOwning<'o, Owning = T::Owning>,
{
    /// Get a reference to either a `T` or a `T::Owning`.
    fn to_ref(&self) -> IdemRef<'_, 'o, T>;

    /// Get a mutable reference to either a `T` or a `T::Owning`.
    fn to_mut(&mut self) -> IdemMut<'_, 'o, T>;

    /// Converts `self` into a `T::Owning`; equivalent to `into_owning().0`.
    #[inline]
    fn into_kept(self) -> T::Owning {
        self.into_owning().0
    }
}

/// Provides an inmutable reference to either a `T` or a `T::Owning`.
#[derive(Debug, PartialEq, Eq)]
pub enum IdemRef<'a, 'o, T>
where
    T: ToOwning<'o>,
{
    /// Provides a mutable reference to a `T`.
    Change(&'a T),
    /// Provides a mutable reference to a `T::Owning`.
    Keep(&'a T::Owning),
}

/// Provides a mutable reference to either a `T` or a `T::Owning`.
#[derive(Debug, PartialEq, Eq)]
pub enum IdemMut<'a, 'o, T>
where
    T: ToOwning<'o>,
{
    /// Provides a mutable reference to a `T`.
    Change(&'a mut T),
    /// Provides a mutable reference to a `T::Owning`.
    Keep(&'a mut T::Owning),
}

/// An [`Idempotent`] implementation which wraps a type that is already
/// `Owning`.
///
/// `Keep` has an additional function outside of its use with `Idempotent`,
/// which is that it implements [`Clone`]. Recall that all types which implement
/// `Clone` have a blanket implementation of [`IntoOwning`] which is just the
/// identity function. Contrapositively, therefore, any type with a
/// *non-trivial* `IntoOwning` implementation cannot implement `Clone`. Usually,
/// the conversion target of a struct's or enum's `IntoOwning` implementation is
/// the same struct or enum with different generic parameters. You might wish to
/// be able to clone such an object after it has already been converted into its
/// owning form, but this is not possible because it breaks Rust's rules about
/// conflicting trait implementations. If you already know you have a type that
/// `IntoOwning` (and therefore implements its supertrait [`ToOwning`]), then you
/// can work around this by calling `.to_owning()` instead of `.clone()` and
/// this will do the same thing. However, if you need to pass the object to
/// something whose generic bounds require a `Clone` implementation, wrapping it
/// with `Keep` can be a convenient solution.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub struct Keep<'o, T>(pub T::Owning)
where
    T: ToOwning<'o>;

/// An [`Idempotent`] implementation whose owning-ness is determined at runtime.
pub enum ChangeOrKeep<'o, T>
where
    T: ToOwning<'o>,
{
    /// A `T` that has not yet been transformed.
    Change(T),
    /// A `T::Owning` which has already been transformed from a `T`.
    Keep(T::Owning),
}

/// An [`Idempotent`] implementation which wraps a type that may yet be converted to `Owning`.
pub struct Change<T>(pub T);
impl<T> Deref for Change<T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<T> DerefMut for Change<T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl<'o, T> ToOwning<'o> for Change<T>
where
    T: 'o + ToOwning<'o>,
{
    type Owning = Keep<'o, T>;

    fn to_owning(&self) -> Self::Owning {
        Keep(self.0.to_owning())
    }
}

impl<'o, T> IntoOwning<'o> for Change<T>
where
    T: 'o + IntoOwning<'o>,
{
    fn into_owning(self) -> Self::Owning {
        Keep(self.0.into_owning())
    }
}

impl<'o, T> Idempotent<'o, T> for Change<T>
where
    T: 'o + IntoOwning<'o>,
    T::Owning: ToOwning<'o, Owning = T::Owning>,
{
    #[inline(always)]
    fn to_ref(&self) -> IdemRef<'_, 'o, T> {
        IdemRef::Change(&self.0)
    }
    #[inline(always)]
    fn to_mut(&mut self) -> IdemMut<'_, 'o, T> {
        IdemMut::Change(&mut self.0)
    }
}

impl<'o, T> Deref for Keep<'o, T>
where
    T: ToOwning<'o>,
{
    type Target = T::Owning;

    #[inline]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<'o, T> DerefMut for Keep<'o, T>
where
    T: ToOwning<'o>,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl<'o, T> Clone for Keep<'o, T>
where
    T: ToOwning<'o>,
    T::Owning: ToOwning<'o, Owning = T::Owning>,
{
    #[inline]
    fn clone(&self) -> Self {
        Keep(self.0.to_owning())
    }
}

impl<'o, T> Idempotent<'o, T> for Keep<'o, T>
where
    T: 'o + IntoOwning<'o>,
    T::Owning: ToOwning<'o, Owning = T::Owning>,
{
    #[inline(always)]
    fn to_ref(&self) -> IdemRef<'_, 'o, T> {
        IdemRef::Keep(&self.0)
    }

    #[inline(always)]
    fn to_mut(&mut self) -> IdemMut<'_, 'o, T> {
        IdemMut::Keep(&mut self.0)
    }
}

impl<'o, T> ToOwning<'o> for ChangeOrKeep<'o, T>
where
    T: 'o + ToOwning<'o>,
    T::Owning: ToOwning<'o, Owning = T::Owning>,
{
    type Owning = Keep<'o, T>;

    fn to_owning(&self) -> Self::Owning {
        match self {
            ChangeOrKeep::Change(o) => Keep(o.to_owning()),
            ChangeOrKeep::Keep(o) => Keep(o.to_owning()),
        }
    }
}

impl<'o, T> IntoOwning<'o> for ChangeOrKeep<'o, T>
where
    T: 'o + IntoOwning<'o>,
    T::Owning: ToOwning<'o, Owning = T::Owning>,
{
    fn into_owning(self) -> Self::Owning {
        match self {
            ChangeOrKeep::Change(o) => Keep(o.into_owning()),
            ChangeOrKeep::Keep(o) => Keep(o),
        }
    }
}

impl<'o, T> Idempotent<'o, T> for ChangeOrKeep<'o, T>
where
    T: 'o + IntoOwning<'o>,
    T::Owning: ToOwning<'o, Owning = T::Owning>,
{
    fn to_ref(&self) -> IdemRef<'_, 'o, T> {
        match self {
            ChangeOrKeep::Change(o) => IdemRef::Change(o),
            ChangeOrKeep::Keep(o) => IdemRef::Keep(o),
        }
    }

    fn to_mut(&mut self) -> IdemMut<'_, 'o, T> {
        match self {
            ChangeOrKeep::Change(o) => IdemMut::Change(o),
            ChangeOrKeep::Keep(o) => IdemMut::Keep(o),
        }
    }
}

/// A zero-sized type which implements [`IntoOwning`].
/// 
/// <div style="max-width: 20em; margin-left: auto; margin-right: auto;">
/// <img src="https://raw.githubusercontent.com/dfoxfranke/static-cow/10cffdd130d62af2ee0c437bc06500cfe8123417/static-cow/images/cow_phantom.webp" alt="Cow phantom"/>
/// </div>
///
/// Structures with fields that are generic over [`StaticCow`]`<'a, B>` often
/// have no fields that directly mention `'a` or `B`, so they need add a phantom
/// in order to placate the type checker, and the structure's
/// [`to_owning`](ToOwning::to_owning) and
/// [`into_owning`](IntoOwning::into_owning) methods will need to change the
/// phantom's lifetime parameter. `CowPhantom` will do the right thing in this
/// respect so that you can simply call `to_owning`/`into_owning` on it just
/// like you would all the other fields in your structure.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct CowPhantom<'a, B>
where
    B: ?Sized,
{
    _phantom: PhantomData<&'a B>,
}

impl<'a, B> Default for CowPhantom<'a, B>
where
    B: 'a + ?Sized,
{
    fn default() -> Self {
        CowPhantom {
            _phantom: PhantomData::default(),
        }
    }
}

impl<'a, 'o, B> ToOwning<'o> for CowPhantom<'a, B>
where
    B: 'o + ?Sized,
{
    type Owning = CowPhantom<'o, B>;

    fn to_owning(&self) -> Self::Owning {
        CowPhantom::default()
    }
}

impl<'a, 'o, B> IntoOwning<'o> for CowPhantom<'a, B>
where
    B: 'o + ?Sized,
{
    fn into_owning(self) -> Self::Owning {
        CowPhantom::default()
    }
}

/// Constructs a [`Keep`], assisting with type inference.
///
/// This function takes an object `o : T` such that `T::Owning = T`, and gives
/// you back a `Keep<T>`. It is most useful when you have a `T` that implements
/// `ToOwning<Owning=T>` but not `Clone`, and you need to wrap it in something
/// that will give you a `Clone` implementation.
///
/// You should *not* use this function in the constructor of a type that is
/// generic over `Idempotent<T>` and give it a `T::Owning`, because that will
/// result in a `Keep<T::Owning>` when what you want is a `Keep<T>`. In this
/// context you should use `Keep`'s primitive constructor instead.
pub fn keep<'o, T>(o: T) -> Keep<'o, T>
where
    T: ToOwning<'o, Owning = T>,
{
    Keep(o)
}