1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
//! Contains the `FixedVec` implementation.
//!
//! [See `FixedVec` for the main information][`FixedVec`].
//!
//! [`FixedVec`]: struct.FixedVec.html
use core::{borrow, cmp, hash, iter, ops, ptr, slice};
use crate::uninit::Uninit;

/// A `Vec`-like structure that does not manage its allocation.
///
/// This vector type will never (re-)allocate but it can also not free underused memory. As opposed
/// to other similar crates, it does require and additional bounds on its type parameter as it
/// truly manages uninitialized memory to store instances.
///
/// # Basic Usage
///
/// It is easy to use a local array or slice of `MaybeUninit` for the storage of a `FixedVec`. Note
/// that, similar to the allocated standard `Vec`, the underlying memory not being stored inline
/// makes moves and splitting much cheaper.
///
/// ```
/// use core::mem::MaybeUninit;
/// use static_alloc::FixedVec;
///
/// let mut memory: [MaybeUninit<usize>; 15] = [MaybeUninit::uninit(); 15];
/// let mut stack = FixedVec::new((&mut memory[..]).into());
///
/// stack.push(1);
/// stack.push(2);
/// stack.push(3);
/// while let Some(top) = stack.pop() {
///     // Prints 3, 2, 1
///     println!("{}", top);
/// }
/// ```
///
/// ## With `Slab`
///
/// One focus of the library is composability. It should not be surprising that `FixedVec`
/// interacts with the [`Slab`] allocator, which implements a specialized interface providing the
/// [`Uninit`] type instead of a raw `*const u8`. Hence, the `FixedVec` can use this instead of its
/// own local stack variables.
///
/// ```
/// use static_alloc::{FixedVec, Slab};
///
/// let alloc: Slab<[u8; 1 << 12]> = Slab::uninit();
/// let some_usize = alloc.leak(0_usize).unwrap();
///
/// // Allocate a vector with capacity `1` from the slab.
/// let mut vec = alloc.fixed_vec(1).unwrap();
///
/// // Push the reference to the other allocation.
/// vec.push(&mut *some_usize);
///
/// // … do something else
///
/// // Ensure lifetimes work out.
/// drop(vec);
///
/// // Hooray, now once again unborrowed.
/// *some_usize = 0;
/// ```
///
/// ## The [`from_unaligned`] constructor
///
/// It is possible to place a `FixedVec` into an uninitialized memory, not only the `Uninit<[T]>`
/// that the [`new`] constructor requires. This will align the underlying memory suitably and
/// substitute a dangling empty slice if that is not possible.
///
/// ```
/// use core::mem::MaybeUninit;
/// use static_alloc::{FixedVec, Uninit};
///
/// struct MyStruct {
///     // ..
/// # _private: [usize; 1],
/// }
///
/// let mut memory: MaybeUninit<[u8; 1024]> = MaybeUninit::uninit();
/// let uninit = Uninit::from(&mut memory);
///
/// // NO guarantees about space lost from required additional aligning.
/// let mut vec: FixedVec<MyStruct> = FixedVec::from_unaligned(uninit);
/// ```
///
/// [`Slab`]: ../slab/struct.Slab.html
/// [`Uninit`]: ../uninit/struct.Uninit.html
/// [`new`]: #method.new
/// [`from_unaligned`]: #method.from_unaligned
pub struct FixedVec<'a, T> {
    uninit: Uninit<'a, [T]>,
    length: usize,
}

/// An iterator removing a range of elements from a `FixedVec`.
///
/// See [`FixedVec::drain`] for more information.
///
/// [`FixedVec::drain`]: struct.FixedVec.html#method.drain
// Internal invariant: `0 <= start <= end <= tail`
pub struct Drain<'a, T> {
    /// Number of elements drained from the start of the slice.
    start: usize,
    /// The end of the elements to drain (relative to `elements`), inbounds offset for `elements`.
    end: usize,
    /// The start of the tail of elements (relative to `elements`), inbounds offset for `elements`.
    tail: usize,
    /// The length of the tail.
    tail_len: usize,
    /// Pointer to first element to drain (and to write to on `Drop`).
    elements: ptr::NonNull<T>,
    /// The length field of the underlying `FixedVec`.
    len: &'a mut usize,
}

impl<T> FixedVec<'_, T> {
    /// Shorten the vector to a maximum length.
    ///
    /// If the length is not larger than `len` this has no effect.
    ///
    /// The tail of the vector is dropped starting from the last element. This order is opposite to
    /// `.drain(len..).for_each(drop)`. `truncate` provides the extra guarantee that a `panic`
    /// during `Drop` of one element effectively stops the truncation at that point, instead of
    /// leaking unspecified other content of the vector. This means that other elements are still
    /// dropped when unwinding eventually drops the `FixedVec` itself.
    ///
    /// ## Example
    ///
    /// ```
    /// # use core::mem::MaybeUninit;
    /// # use static_alloc::{FixedVec, Uninit};
    ///
    /// let mut memory: [MaybeUninit<usize>; 4] = [MaybeUninit::uninit(); 4];
    /// let mut vec = FixedVec::new(Uninit::from(&mut memory[..]));
    ///
    /// vec.push(0usize);
    /// vec.push(1usize);
    /// vec.push(2usize);
    ///
    /// assert_eq!(vec.as_slice(), [0, 1, 2]);
    /// vec.truncate(1);
    /// assert_eq!(vec.as_slice(), [0]);
    /// ```
    pub fn truncate(&mut self, len: usize) {
        struct SetLenOnDrop<'a> {
            len: &'a mut usize,
            local_len: usize,
        }

        impl Drop for SetLenOnDrop<'_> {
            fn drop(&mut self) {
                *self.len = self.local_len;
            }
        }

        let mut ptr = self.end_mut_ptr();
        let current_length = self.length;
        let mut set_len = SetLenOnDrop { len: &mut self.length, local_len: current_length };

        for _ in len..current_length {
            set_len.local_len -= 1;

            unsafe {
                ptr = ptr.offset(-1);
                ptr::drop_in_place(ptr);
            }
        }
    }

    /// Extracts a slice containing the entire vector.
    pub fn as_slice(&self) -> &[T] {
        unsafe {
            // SAFETY: length is the number of initialized elements.
            slice::from_raw_parts(self.uninit.as_begin_ptr(), self.length)
        }
    }

    /// Extracts the mutable slice containing the entire vector.
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        unsafe {
            // SAFETY:
            // * length is the number of initialized elements.
            // * unaliased since we take ourselves by `mut` and `uninit` does the rest.
            slice::from_raw_parts_mut(self.uninit.as_begin_ptr(), self.length)
        }
    }

    /// Remove all elements.
    ///
    /// This is an alias for [`truncate(0)`][truncate].
    ///
    /// [truncate]: #method.truncate
    pub fn clear(&mut self) {
        self.truncate(0)
    }

    /// Returns the number of elements in the vector.
    pub fn len(&self) -> usize {
        self.length
    }

    /// Set the raw length.
    ///
    /// ## Safety
    /// * `new_len` must be smaller or equal `self.capacity()`
    /// * The caller must ensure that all newly referenced elements are properly initialized.
    pub unsafe fn set_len(&mut self, new_len: usize) {
        self.length = new_len;
    }

    /// Returns the number of elements the vector can hold.
    pub fn capacity(&self) -> usize {
        self.uninit.capacity()
    }

    /// Returns `true` if the vector contains no elements.
    pub fn is_empty(&self) -> bool {
        self.length == 0
    }

    /// Appends an element to the back of a collection.
    ///
    /// Return `Err(val)` if it is not possible to append the element.
    ///
    /// ```
    /// use static_alloc::{FixedVec, Uninit};
    /// use core::mem::MaybeUninit;
    ///
    /// // Only enough storage for one element.
    /// let mut allocation: [MaybeUninit<u32>; 1] = [MaybeUninit::uninit()];
    /// let mut vec = FixedVec::new(Uninit::from(&mut allocation[..]));
    ///
    /// // First push succeeds.
    /// assert_eq!(vec.push(1), Ok(()));
    ///
    /// // The second push fails.
    /// assert_eq!(vec.push(2), Err(2));
    ///
    /// ```
    pub fn push(&mut self, val: T) -> Result<(), T> {
        if self.length == usize::max_value() {
            return Err(val);
        }

        let init = match self.head_tail_mut().1.split_first() {
            Some(init) => init,
            None => return Err(val),
        };

        init.init(val);
        self.length += 1;

        Ok(())
    }

    /// Removes the last element from a vector and returns it, or `None` if it is empty.
    pub fn pop(&mut self) -> Option<T> {
        if self.length == 0 {
            return None;
        }

        let last = self.head_tail_mut().0.split_last().unwrap();
        let val = unsafe {
            // SAFETY: initialized and no reference of any kind exists to it.
            ptr::read(last.as_ptr())
        };

        self.length -= 1;
        Some(val)
    }

    /// Split the capacity into a *borrowed* other vector.
    ///
    /// The other vector borrows the underlying memory resource while it is alive.
    ///
    /// This is a specialized method not found in the standard `Vec` as it relies on `FixedVec` not
    /// owning the allocation itself. This avoids splitting the underlying allocation which would
    /// require `unsafe` to mend the parts together.
    ///
    /// ## Panics
    /// This method panics if `at > self.capacity()`.
    ///
    /// ## Examples
    ///
    /// ```
    /// use static_alloc::{FixedVec, Slab};
    ///
    /// let mut memory: Slab<[usize; 8]> = Slab::uninit();
    /// let mut vec = memory.fixed_vec::<usize>(8).unwrap();
    /// vec.fill(0..7);
    ///
    /// // Can use like a vector:
    /// let mut part = vec.split_borrowed(4);
    /// assert!(part.push(7).is_ok());
    /// assert!((4..8).eq(part.drain(..)));
    ///
    /// // Drop to rescind the borrow on `vec`.
    /// drop(part);
    ///
    /// // All split elements are gone
    /// assert_eq!(vec.len(), 4);
    /// // But retained all capacity
    /// assert_eq!(vec.capacity(), 8);
    /// ```
    #[must_use = "Elements in the split tail will be dropped. Prefer `truncate(at)` or `drain(at..)` if there is no other use."]
    pub fn split_borrowed(&mut self, at: usize) -> FixedVec<'_, T> {
        assert!(at <= self.capacity(), "`at` out of bounds");
        let new_uninit = self.uninit.borrow_mut().split_at(at).unwrap();
        let new_len = self.length.saturating_sub(at);
        self.length -= new_len;
        FixedVec {
            uninit: new_uninit,
            length: new_len,
        }
    }

    /// Split the capacity of the collection into two at a given index.
    ///
    /// In contrast to `Vec::split_off` calling this method reduces the capacity of `self` to `at`.
    ///
    /// ## Panics
    /// This method panics if `at > self.capacity()`.
    pub fn split_and_shrink_to(&mut self, at: usize) -> Self {
        assert!(at <= self.capacity(), "`at` out of bounds");
        // `self.length` is always smaller than `split_at`.
        let new_uninit = self.uninit.split_at(at).unwrap();
        // The first `at` elements stay in this vec.
        let new_len = self.length.saturating_sub(at);
        self.length -= new_len;
        FixedVec {
            uninit: new_uninit,
            length: new_len,
        }
    }

    /// Extend the vector with as many elements as fit.
    ///
    /// Returns the iterator with all elements that were not pushed into the vector.
    pub fn fill<I: IntoIterator<Item = T>>(&mut self, iter: I)
        -> I::IntoIter
    {
        let unused = self.capacity() - self.len();
        let mut iter = iter.into_iter();
        for item in iter.by_ref().take(unused) {
            unsafe {
                // SAFETY:
                //  `capacity != len` so this is strictly in bounds. Also, this is behind the
                //  vector so there can not be any references to it currently.
                ptr::write(self.end_mut_ptr(), item);
                // SAFETY:
                //  Just initialized one more element past the end. By the way, this can not
                //  overflow since the result is at most `self.capacity()`.
                self.set_len(self.len() + 1);
            }
        }
        iter
    }

    /// Creates a draining iterator that yields and removes elements a given range.
    ///
    /// It is unspecified which elements are removed if the `Drain` is never dropped. If you
    /// require precise semantics even in this case you might be able to swap the range to the back
    /// of the vector and invoke [`split_and_shrink_to`].
    ///
    /// [`split_and_shrink_to`]: #method.split_and_shrink_to
    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
        where R: ops::RangeBounds<usize>
    {
        let len = self.len();
        let start = match range.start_bound() {
            ops::Bound::Included(&n) => n,
            ops::Bound::Excluded(&n) => n + 1,
            ops::Bound::Unbounded    => 0,
        };
        let end = match range.end_bound() {
            ops::Bound::Included(&n) => n + 1,
            ops::Bound::Excluded(&n) => n,
            ops::Bound::Unbounded    => len,
        };
        assert!(start <= end);
        assert!(end <= len);

        let elements = unsafe {
            // SAFETY:
            //  Within allocation since `start <= len` and len is at most the
            //  one-past-the-end pointer. Pointer within are also never null.
            //
            //  In particular we can shorten the length. We initially shorten
            //  the length until all elements are drained. The Drain will
            //  increase the length by `len - end` elements which will still be
            //  within the bounds of the allocation as `start <= end`.
            self.set_len(start);
            ptr::NonNull::new_unchecked(self.as_mut_ptr().add(start))
        };

        Drain {
            // Internal invariant: `count <= tail`.
            start: 0,
            // Relative to `elements`. inbounds of original `as_mut_ptr()`.
            end: end - start,
            tail: end - start,
            tail_len: len - end,
            elements,
            len: &mut self.length,
        }
    }

    fn head_tail_mut(&mut self) -> (Uninit<'_, [T]>, Uninit<'_, [T]>) {
        // Borrow, do not affect the actual allocation by throwing away possible elements.
        let mut all = self.uninit.borrow_mut();
        // This must always be possible. `self.length` is nevery greater than the capacity.
        let tail = all.split_at(self.length).unwrap();
        (all, tail)
    }

    fn end_mut_ptr(&mut self) -> *mut T {
        unsafe { self.as_mut_ptr().add(self.length) }
    }
}

impl<'a, T> FixedVec<'a, T> {
    /// Create a `FixedVec` in a pre-allocated region.
    ///
    /// The capacity will be that of the underlying allocation.
    pub fn new(uninit: Uninit<'a, [T]>) -> Self {
        FixedVec {
            uninit,
            length: 0,
        }
    }

    /// Create a `FixedVec` with as large of a capacity as available.
    ///
    /// When no aligned slice can be create within the provided memory then the constructor will
    /// fallback to an empty dangling slice.
    ///
    /// This is only a utility function which may be lossy as data before the alignment is
    /// discarded. Prefer an explicit [`Uninit::cast_slice`] followed by error handling if this is
    /// undesirable.
    ///
    /// [`Uninit::cast_slice`]: ../uninit/struct.Uninit.html#method.cast_slice
    pub fn from_unaligned<U: ?Sized>(generic: Uninit<'a, U>) -> Self {
        let mut uninit = generic.as_memory();
        let slice = uninit.split_slice().unwrap_or_else(Uninit::empty);
        Self::new(slice)
    }

    /// Return trailing bytes that can not be used by the `FixedVec`.
    ///
    /// This operation is idempotent.
    pub fn shrink_to_fit(&mut self) -> Uninit<'a, ()> {
        self.uninit.shrink_to_fit()
    }
}

impl<T> Drain<'_, T> {
    /// View the remaining data as a slice.
    ///
    /// Similar to `slice::Iter::as_slice` but you are not allowed to use the iterator as it will
    /// invalidate the pointees. This is an extended form of `Peekable::peek`.
    pub fn as_slice(&self) -> &[T] {
        unsafe {
            // SAFETY: all indices up to `tail` are inbounds. Internal invariant guarantees `start`
            // is smaller.
            slice::from_raw_parts(
                self.elements.as_ptr().add(self.start),
                self.len())
        }
    }

    /// View the remaining data as a mutable slice.
    ///
    /// This is `Peekable::peek` on steroids.
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        unsafe {
            // SAFETY: all indices up to `tail` are inbounds. Internal invariant guarantees `start`
            // is smaller. Not aliased as it mutably borrows the `Drain`.
            slice::from_raw_parts_mut(
                self.elements.as_ptr().add(self.start),
                self.len())
        }
    }

    /// The count of remaining elements to drain.
    pub fn len(&self) -> usize {
        self.end - self.start
    }

    /// If there are any elements remaining.
    pub fn is_empty(&self) -> bool {
        self.start == self.end
    }
}

impl<T> ops::Deref for FixedVec<'_, T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        self.as_slice()
    }
}

impl<T> ops::DerefMut for FixedVec<'_, T> {
    fn deref_mut(&mut self) -> &mut [T] {
        self.as_mut_slice()
    }
}

impl<T> Drop for FixedVec<'_, T> {
    fn drop(&mut self) {
        unsafe {
            ptr::drop_in_place(self.as_mut_slice())
        }
    }
}

impl<T, I> ops::Index<I> for FixedVec<'_, T>
    where I: slice::SliceIndex<[T]>,
{
    type Output = I::Output;

    fn index(&self, idx: I) -> &I::Output {
        ops::Index::index(&**self, idx)
    }
}

impl<T, I> ops::IndexMut<I> for FixedVec<'_, T>
    where I: slice::SliceIndex<[T]>,
{
    fn index_mut(&mut self, idx: I) -> &mut I::Output {
        ops::IndexMut::index_mut(&mut**self, idx)
    }
}

impl<'a, 'b, T: PartialEq> PartialEq<FixedVec<'b, T>> for FixedVec<'a, T> {
    #[inline]
    fn eq(&self, other: &FixedVec<T>) -> bool {
        PartialEq::eq(&**self, &**other)
    }
    #[inline]
    fn ne(&self, other: &FixedVec<T>) -> bool {
        PartialEq::ne(&**self, &**other)
    }
}

impl<'a, 'b, T: PartialOrd> PartialOrd<FixedVec<'b, T>> for FixedVec<'a, T> {
    #[inline]
    fn partial_cmp(&self, other: &FixedVec<T>) -> Option<cmp::Ordering> {
        PartialOrd::partial_cmp(&**self, &**other)
    }
    #[inline]
    fn lt(&self, other: &FixedVec<T>) -> bool {
        PartialOrd::lt(&**self, &**other)
    }
    #[inline]
    fn le(&self, other: &FixedVec<T>) -> bool {
        PartialOrd::le(&**self, &**other)
    }
    #[inline]
    fn ge(&self, other: &FixedVec<T>) -> bool {
        PartialOrd::ge(&**self, &**other)
    }
    #[inline]
    fn gt(&self, other: &FixedVec<T>) -> bool {
        PartialOrd::gt(&**self, &**other)
    }
}

impl<T: Ord> Ord for FixedVec<'_, T> {
    #[inline]
    fn cmp(&self, other: &FixedVec<T>) -> cmp::Ordering {
        Ord::cmp(&**self, &**other)
    }
}

impl<T: Eq> Eq for FixedVec<'_, T> { }

impl<T: hash::Hash> hash::Hash for FixedVec<'_, T> {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        hash::Hash::hash(&**self, state)
    }
}

impl<T> borrow::Borrow<[T]> for FixedVec<'_, T> {
    fn borrow(&self) -> &[T] {
        &**self
    }
}

impl<T> borrow::BorrowMut<[T]> for FixedVec<'_, T> {
    fn borrow_mut(&mut self) -> &mut [T] {
        &mut **self
    }
}

impl<T> AsRef<[T]> for FixedVec<'_, T> {
    fn as_ref(&self) -> &[T] {
        &**self
    }
}

impl<T> AsMut<[T]> for FixedVec<'_, T> {
    fn as_mut(&mut self) -> &mut [T] {
        &mut **self
    }
}

impl<T> Iterator for Drain<'_, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        if Drain::is_empty(self) {
            return None;
        }

        let t = unsafe {
            // SAFETY: `count <= self.tail` and `tail` is always in bounds.
            ptr::read(self.elements.as_ptr().add(self.start))
        };

        self.start += 1;
        Some(t)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.start..self.end).size_hint()
    }
}

impl<T> DoubleEndedIterator for Drain<'_, T> {
    fn next_back(&mut self) -> Option<T> {
        if Drain::is_empty(self) {
            return None;
        }

        let t = unsafe {
            // SAFETY: `end <= self.tail` and `tail` is always in bounds.
            ptr::read(self.elements.as_ptr().add(self.end - 1))
        };

        self.end -= 1;
        Some(t)
    }
}

impl<T> ExactSizeIterator for Drain<'_, T> {
    fn len(&self) -> usize {
        Drain::len(self)
    }
}

impl<T> iter::FusedIterator for Drain<'_, T> { }

impl<T> Drop for Drain<'_, T> {
    fn drop(&mut self) {
        self.for_each(drop);

        if self.tail_len != 0 {
            unsafe {
                let source = self.elements.as_ptr().add(self.tail);
                ptr::copy(source, self.elements.as_ptr(), self.tail_len);
            }
            // Restore the tail to the vector.
            *self.len += self.tail_len;
        }
    }
}

/// Extend the vector to the extent the allocation allows it.
///
/// Appends elements from the iterator until the capacity of the vector is exhausted. Then drops
/// the remaining iterator **without** iterating through all remaining elements. This allows the
/// caller to decide the fate or all other elements by passing the iterator by reference.
///
/// ## Examples
///
/// Some iterators will drain themselves on drop, for example [`Drain`]. This will empty the source
/// vector even if the target has not enough space.
///
/// ```
/// # use core::mem::MaybeUninit;
/// # use static_alloc::FixedVec;
///
/// let mut memory: [MaybeUninit<usize>; 15] = [MaybeUninit::uninit(); 15];
/// let mut source = FixedVec::new((&mut memory[..]).into());
/// source.extend(0..15);
///
/// let mut memory: [MaybeUninit<usize>; 3] = [MaybeUninit::uninit(); 3];
/// let mut target = FixedVec::new((&mut memory[..]).into());
/// target.extend(source.drain(..));
///
/// assert!(source.is_empty());
/// assert_eq!(target.len(), target.capacity());
/// ```
impl<T> iter::Extend<T> for FixedVec<'_, T> {
    fn extend<I>(&mut self, iter: I)
        where I: IntoIterator<Item=T>,
    {
        let _ = self.fill(iter);
    }
}

#[cfg(test)]
mod tests {
    use super::FixedVec;
    use crate::Uninit;

    use core::cell::Cell;
    use core::mem::MaybeUninit;
    use core::sync::atomic::{AtomicUsize, Ordering};

    #[derive(Debug)]
    struct Trigger<'a> {
        panic_on_drop: bool,
        dropped_counter: &'a Cell<usize>,
    }

    impl Drop for Trigger<'_> {
        fn drop(&mut self) {
            if self.panic_on_drop { panic!("Trigger triggered") }
            // Record this as a normal drop.
            self.dropped_counter.set(self.dropped_counter.get() + 1);
        }
    }

    struct AbortMismatchedDropCount<'a> {
        counter: &'a Cell<usize>,
        expected: usize,
    }

    impl Drop for AbortMismatchedDropCount<'_> {
        fn drop(&mut self) {
            struct ForceDupPanic;

            impl Drop for ForceDupPanic {
                fn drop(&mut self) { panic!() }
            }

            if self.expected != self.counter.get() {
                // For duplicate panic, and thus abort
                let _x = ForceDupPanic;
                panic!();
            }
        }
    }

    #[test]
    fn init_and_use() {
        #[derive(Clone, Copy, Debug, PartialEq, Eq)]
        struct Foo(usize);

        const CAPACITY: usize = 30;

        let mut allocation: [MaybeUninit<Foo>; 30] = [MaybeUninit::uninit(); 30];
        let mut vec = FixedVec::new((&mut allocation[..]).into());

        assert_eq!(vec.capacity(), CAPACITY);
        assert_eq!(vec.len(), 0);
        for i in 0..CAPACITY {
            assert_eq!(vec.push(Foo(i)), Ok(()));
        }

        assert_eq!(vec.capacity(), CAPACITY);
        assert_eq!(vec.len(), CAPACITY);

        for i in (0..CAPACITY).rev() {
            assert_eq!(vec.pop(), Some(Foo(i)));
        }

        assert_eq!(vec.capacity(), CAPACITY);
        assert_eq!(vec.len(), 0);
    }

    #[test]
    fn zst_drop() {
        const COUNT: usize = 30;
        static DROP_COUNTER: AtomicUsize = AtomicUsize::new(0);
        struct HasDrop(usize);

        impl Drop for HasDrop {
            fn drop(&mut self) {
                DROP_COUNTER.fetch_add(1, Ordering::SeqCst);
            }
        }


        let mut allocation: MaybeUninit<[HasDrop; COUNT]> = MaybeUninit::uninit();
        let uninit = Uninit::from_maybe_uninit(&mut allocation);
        let mut vec = FixedVec::new(uninit.cast_slice().unwrap());

        for i in 0..COUNT {
            assert!(vec.push(HasDrop(i)).is_ok());
        }

        drop(vec);
        assert_eq!(DROP_COUNTER.load(Ordering::SeqCst), COUNT);
    }

    #[test]
    fn zst() {
        struct Zst;
        let vec = FixedVec::<Zst>::new(Uninit::empty());
        assert_eq!(vec.capacity(), usize::max_value());
    }

    #[test]
    fn split_and_shrink() {
        // Zeroed because we want to test the contents.
        let mut allocation: MaybeUninit<[u16; 8]> = MaybeUninit::zeroed();

        let mut aligned = Uninit::from(&mut allocation).as_memory();
        let _ = aligned.split_at_byte(15);

        let mut vec = FixedVec::new(aligned.cast_slice().unwrap());
        let mut second = vec.split_and_shrink_to(4);
        let tail = second.shrink_to_fit();

        assert_eq!(vec.capacity(), 4);
        assert_eq!(vec.shrink_to_fit().size(), 0);
        assert_eq!(second.capacity(), 3);
        assert_eq!(second.shrink_to_fit().size(), 0);
        assert_eq!(tail.size(), 1);

        let _ = tail.cast::<u8>().unwrap().init(0xFF);
        (0_u16..4).for_each(|v| assert!(vec.push(v).is_ok()));
        (4..7).for_each(|v| assert!(second.push(v).is_ok()));

        assert_eq!(vec.len(), 4);
        assert_eq!(second.len(), 3);

        drop(vec);
        drop(second);
        assert_eq!(
            &unsafe { *allocation.as_ptr() }[..7],
            [0, 1, 2, 3, 4, 5, 6]);
    }

    /// Tests panics during truncation behave as expected.
    ///
    /// Unwinding started in a panic during truncation should not effect `Drop` calls when the
    /// `Vec` itself is hit by the unwinding. We test this by voluntarily triggering an unwinding
    /// and counting the number of values which have been dropped regularly (that is, during the
    /// `Drop` of `Vec` when it is unwound).
    ///
    /// Note that this test is already `should_panic` and the observable failure is thus an abort
    /// from a double panic!
    #[test]
    #[should_panic = "Trigger triggered"]
    fn drop_safe_in_truncation() {
        let mut allocation: MaybeUninit<[Trigger<'static>; 3]> = MaybeUninit::zeroed();
        let drops = Cell::new(0);

        // Is `Drop`ed *after* the Vec, and will record the number of usually dropped Triggers.
        let _abort_mismatch_raii = AbortMismatchedDropCount {
            counter: &drops,
            expected: 2,
        };

        let uninit = Uninit::from(&mut allocation).as_memory();
        let mut vec = FixedVec::new(uninit.cast_slice().unwrap());

        vec.push(Trigger { panic_on_drop: false, dropped_counter: &drops }).unwrap();
        // This one is within the truncated tail but is not dropped until unwind as truncate
        // panics. If we were to skip dropping all values of the tail in unwind we'd notice.
        vec.push(Trigger { panic_on_drop: false, dropped_counter: &drops }).unwrap();
        vec.push(Trigger { panic_on_drop: true, dropped_counter: &drops }).unwrap();

        // Trigger!
        vec.truncate(1);
    }

    #[test]
    fn fill_drops() {
        let mut allocation: MaybeUninit<[Trigger<'static>; 2]> = MaybeUninit::zeroed();
        let drops = Cell::new(0);

        // Is `Drop`ed *after* the Vec, and will record the number of usually dropped Triggers.
        let _abort_mismatch_raii = AbortMismatchedDropCount {
            counter: &drops,
            expected: 2
        };

        let uninit = Uninit::from(&mut allocation).as_memory();
        let mut vec = FixedVec::new(uninit.cast_slice().unwrap());

        vec.push(Trigger { panic_on_drop: false, dropped_counter: &drops }).unwrap();
        // This should fill the single remaining slot in the Vec. Only one element is
        // instantiated.
        let _ = vec.fill(core::iter::repeat_with(
            || Trigger { panic_on_drop: false, dropped_counter: &drops }));
    }
}