1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
//! The slab allocator.
//!
//! Basics of usage and the connection between the structs is discussed in the documentation of the
//! [`Slab`] itself.
//!
//! [`Slab`]: struct.Slab.html
use core::alloc::{GlobalAlloc, Layout};
use core::cell::UnsafeCell;
use core::mem::{self, MaybeUninit};
use core::ptr::{NonNull, null_mut};
use core::sync::atomic::{AtomicUsize, Ordering};

use super::{Box, FixedVec, Uninit};
use crate::rc::Rc;

/// Allocator drawing from an inner, statically sized memory resource.
///
/// The type parameter `T` is used only to annotate the required size and alignment of the region
/// and has no futher use. Note that in particular there is no safe way to retrieve or unwrap an
/// inner instance even if the `Slab` was not constructed as a shared global static. Nevertheless,
/// the choice of type makes it easier to reason about potentially required extra space due to
/// alignment padding.
///
/// ## Usage as global allocator
///
/// You can use the stable rust attribute to use an instance of this type as the global allocator.
///
/// ```rust,no_run
/// use static_alloc::Slab;
///
/// #[global_allocator]
/// static A: Slab<[u8; 1 << 16]> = Slab::uninit();
///
/// fn main() { }
/// ```
///
/// Take care, some runtime features of Rust will allocate some memory before or after your own
/// code. In particular, it was found to be be tricky to predict the usage of the builtin test
/// framework which seemingly allocates some structures per test.
///
/// ## Usage as a non-dropping local allocator
///
/// It is also possible to use a `Slab` as a stack local allocator or a specialized allocator. The
/// interface offers some utilities for allocating values from references to shared or unshared
/// instances directly. **Note**: this will never call the `Drop` implementation of the allocated
/// type. In particular, it would almost surely not be safe to `Pin` the values, except if there is
/// a guarantee for the `Slab` itself to not be deallocated either.
///
/// ```rust
/// use static_alloc::Slab;
///
/// let local: Slab<[u64; 3]> = Slab::uninit();
///
/// let one = local.leak(0_u64).unwrap();
/// let two = local.leak(1_u64).unwrap();
/// let three = local.leak(2_u64).unwrap();
///
/// // Exhausted the space.
/// assert!(local.leak(3_u64).is_err());
/// ```
///
/// Mind that the supplied type parameter influenced *both* size and alignment and a `[u8; 24]`
/// does not guarantee being able to allocation three `u64` even though most targets have a minimum
/// alignment requirement of 16 and it works fine on those.
///
/// ```rust
/// # use static_alloc::Slab;
/// // Just enough space for `u128` but no alignment requirement.
/// let local: Slab<[u8; 16]> = Slab::uninit();
///
/// // May or may not return an err.
/// let _ = local.leak(0_u128);
/// ```
///
/// Instead use the type parameter to `Slab` as a hint for the best alignment.
///
/// ```rust
/// # use static_alloc::Slab;
/// // Enough space and align for `u128`.
/// let local: Slab<[u128; 1]> = Slab::uninit();
///
/// assert!(local.leak(0_u128).is_ok());
/// ```
///
/// ## Usage as a (local) bag of bits
///
/// It is of course entirely possible to use a local instance instead of a single global allocator.
/// For example you could utilize the pointer interface directly to build a `#[no_std]` dynamic
/// data structure in an environment without `extern lib alloc`. This feature was the original
/// motivation behind the crate but no such data structures are provided here so a quick sketch of
/// the idea must do:
///
/// ```
/// use core::alloc;
/// use static_alloc::Slab;
///
/// #[repr(align(4096))]
/// struct PageTable {
///     // some non-trivial type.
/// #   _private: [u8; 4096],
/// }
///
/// impl PageTable {
///     /// Avoid stack allocation of the full struct.
///     pub unsafe fn new(into: *mut u8) -> &'static mut Self {
///         // ...
/// #       &mut *(into as *mut Self)
///     }
/// }
///
/// // Allocator for pages for page tables. Provides 64 pages. When the
/// // program/kernel is provided as an ELF the bootloader reserves
/// // memory for us as part of the loading process that we can use
/// // purely for page tables. Replaces asm `paging: .BYTE <size>;`
/// static Paging: Slab<[u8; 1 << 18]> = Slab::uninit();
///
/// fn main() {
///     let layout = alloc::Layout::new::<PageTable>();
///     let memory = Paging.alloc(layout).unwrap();
///     let table = unsafe {
///         PageTable::new(memory.as_ptr())
///     };
/// }
/// ```
///
/// A similar structure would of course work to allocate some non-`'static' objects from a
/// temporary `Slab`.
///
/// ## More insights
///
/// The ordering used is currently `SeqCst`. This enforces a single global sequence of observed
/// effects on the slab level. The author is fully aware that this is not strictly necessary. In
/// fact, even `AcqRel` may not be required as the monotonic bump allocator does not synchronize
/// other memory itself. If you bring forward a PR with a formalized reasoning for relaxing the
/// requirements to `Relaxed` (llvm `Monotonic`) it will be greatly appreciated (even more if you
/// demonstrate performance gains).
///
/// WIP: slices.
pub struct Slab<T> {
    /// An monotonic atomic counter of consumed bytes.
    ///
    /// It is only mutably accessed in `bump` which guarantees its invariants.
    consumed: AtomicUsize,

    /// Outer unsafe cell due to thread safety.
    /// Inner MaybeUninit because we padding may destroy initialization invariant
    /// on the bytes themselves, and hence drop etc must not assumed inited.
    storage: UnsafeCell<MaybeUninit<T>>,
}

/// A value could not be moved into a slab allocation.
///
/// The error contains the value for which the allocation failed. Storing the value in the error
/// keeps it alive in all cases. This prevents the `Drop` implementation from running and preserves
/// resources which may otherwise not be trivial to restore.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct LeakError<T> {
    val: T,
    failure: Failure,
}

/// Specifies an amount of consumed space of a slab.
///
/// Each allocation of the `Slab` increases the current level as they must not be empty. By
/// ensuring that an allocation is performed at a specific level it is thus possible to check that
/// multiple allocations happened in succession without other intermediate allocations. This
/// ability in turns makes it possible to group allocations together, for example to initialize a
/// `#[repr(C)]` struct member-by-member or to extend a slice.
///
/// ## Usage
///
/// The main use is successively allocating a slice without requiring all data to be present at
/// once. Other similar interface often require an internal locking mechanism but `Level` leaves
/// the choice to the user. This is not yet encapsulate in a safe API yet `Level` makes it easy to
/// reason about.
///
/// ```
/// # use core::slice;
/// # use static_alloc::slab::{Level, Slab};
/// static SLAB: Slab<[u64; 4]> = Slab::uninit();
///
/// /// Gathers as much data as possible.
/// ///
/// /// An arbitrary amount of data, can't stack allocate!
/// fn gather_data(mut iter: impl Iterator<Item=u64>) -> &'static mut [u64] {
///     let first = match iter.next() {
///         Some(item) => item,
///         None => return &mut [],
///     };
///
///     let mut level: Level = SLAB.level();
///     let mut begin: *mut u64;
///     let mut count;
///
///     match SLAB.leak_at(first, level) {
///         Ok((first, first_level)) => {
///             begin = first;
///             level = first_level;
///             count = 1;
///         },
///         _ => return &mut [],
///     }
///
///     let _ = iter.try_for_each(|value: u64| {
///         match SLAB.leak_at(value, level) {
///             Err(err) => return Err(err),
///             Ok((_, new_level)) => level = new_level,
///         };
///         count += 1;
///         Ok(())
///     });
///
///     unsafe {
///         // SAFETY: all `count` allocations are contiguous, begin is well aligned and no
///         // reference is currently pointing at any of the values. The lifetime is `'static` as
///         // the SLAB itself is static.
///         slice::from_raw_parts_mut(begin, count)
///     }
/// }
///
/// fn main() {
///     // There is no other thread running, so this succeeds.
///     let slice = gather_data(0..=3);
///     assert_eq!(slice, [0, 1, 2, 3]);
/// }
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Level(usize);

/// A successful allocation and current [`Level`].
///
/// [`Level`]: struct.Level.html
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct Allocation {
    /// Pointer to the region with specified layout.
    pub ptr: NonNull<u8>,

    /// The observed amount of consumed bytes.
    pub level: Level,
}

/// Values of for some allocation including the [`Uninit`].
///
/// See [`Uninit`] for a better picture of the potential usage of this result.
///
/// [`Uninit`]: ../uninit/struct.Uninit.html
#[derive(Debug)]
pub struct UninitAllocation<'a, T=()> {
    /// Uninit pointer to the region with specified layout.
    pub uninit: Uninit<'a, T>,

    /// The observed amount of consumed bytes after the allocation.
    pub level: Level,
}

/// Reason for a failed allocation at an exact [`Level`].
///
/// [`Level`]: struct.Level.html
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Failure {
    /// No space left for that allocation.
    Exhausted,

    /// The allocation would not have used the expected base location.
    ///
    /// Reports the location that was observed. When only levels from the same slab are used (which
    /// should normally be the case) then the observed level is monotonically increasing.
    Mismatch {
        /// The observed level that was different from the requested one.
        observed: Level,
    },
}

impl<T> Slab<T> {
    /// Make a new allocatable slab of certain byte size and alignment.
    ///
    /// The storage will contain uninitialized bytes.
    pub const fn uninit() -> Self {
        Slab {
            consumed: AtomicUsize::new(0),
            storage: UnsafeCell::new(MaybeUninit::uninit()),
        }
    }

    /// Make a new allocatable slab of certain byte size and alignment.
    ///
    /// The storage will contain zeroed bytes. This is not *yet* available
    /// as a `const fn` which currently limits its potential usefulness
    /// but there is no good reason not to provide it regardless.
    pub fn zeroed() -> Self {
        Slab {
            consumed: AtomicUsize::new(0),
            storage: UnsafeCell::new(MaybeUninit::zeroed()),
        }
    }

    /// Make a new allocatable slab provided with some bytes it can hand out.
    ///
    /// Note that `storage` will never be dropped and there is no way to get it back.
    pub const fn new(storage: T) -> Self {
        Slab {
            consumed: AtomicUsize::new(0),
            storage: UnsafeCell::new(MaybeUninit::new(storage)),
        }
    }

    /// Allocate a region of memory.
    ///
    /// This is a safe alternative to [GlobalAlloc::alloc](#impl-GlobalAlloc).
    ///
    /// # Panics
    /// This function will panic if the requested layout has a size of `0`. For the use in a
    /// `GlobalAlloc` this is explicitely forbidden to request and would allow any behaviour but we
    /// instead strictly check it.
    pub fn alloc(&self, layout: Layout) -> Option<NonNull<u8>> {
        Some(self.try_alloc(layout)?.uninit.as_non_null().cast())
    }

    /// Try to allocate some layout with a precise base location.
    ///
    /// The base location is the currently consumed byte count, without correction for the
    /// alignment of the allocation. This will succeed if it can be allocate exactly at the
    /// expected location.
    ///
    /// # Panics
    /// This function may panic if the provided `level` is from a different slab.
    pub fn alloc_at(&self, layout: Layout, level: Level)
        -> Result<Allocation, Failure>
    {
        let UninitAllocation { uninit, level } = self.try_alloc_at(layout, level.0)?;

        Ok(Allocation {
            ptr: uninit.as_non_null().cast(),
            level,
        })
    }

    /// Get an allocation with detailed layout.
    ///
    /// Provides an [`Uninit`] wrapping several aspects of initialization in a safe interface,
    /// bound by the lifetime of the reference to the allocator.
    ///
    /// [`Uninit`]: ../uninit/struct.Uninit.html
    pub fn get_layout(&self, layout: Layout)
        -> Option<UninitAllocation<'_>>
    {
        self.try_alloc(layout)
    }

    /// Get an allocation with detailed layout at a specific level.
    ///
    /// Provides an [`Uninit`] wrapping several aspects of initialization in a safe interface,
    /// bound by the lifetime of the reference to the allocator.
    ///
    /// Since the underlying allocation is the same, it would be `unsafe` but justified to fuse
    /// this allocation with the preceding or succeeding one.
    ///
    /// [`Uninit`]: ../uninit/struct.Uninit.html
    pub fn get_layout_at(&self, layout: Layout, at: Level)
        -> Result<UninitAllocation<'_>, Failure>
    {
        self.try_alloc_at(layout, at.0)
    }

    /// Get an allocation for a specific type.
    ///
    /// It is not yet initialized but provides a safe interface for that initialization.
    ///
    /// ## Usage
    ///
    /// ```
    /// # use static_alloc::Slab;
    /// use core::cell::{Ref, RefCell};
    ///
    /// let slab: Slab<[Ref<'static, usize>; 1]> = Slab::uninit();
    /// let data = RefCell::new(0xff);
    ///
    /// // We can place a `Ref` here but we did not yet.
    /// let alloc = slab.get::<Ref<usize>>().unwrap();
    /// let cell_ref = alloc.uninit.init(data.borrow());
    ///
    /// assert_eq!(**cell_ref, 0xff);
    /// ```
    pub fn get<V>(&self) -> Option<UninitAllocation<V>> {
        if mem::size_of::<V>() == 0 {
            return Some(self.zst_fake_alloc());
        }

        let layout = Layout::new::<V>();
        let UninitAllocation { uninit, level, } = self.try_alloc(layout)?;

        Some(UninitAllocation {
            // UNWRAP: it has exactly the requested size of `V`.
            uninit: uninit.cast().ok().unwrap(),
            level,
        })
    }

    /// Get an allocation for a specific type at a specific level.
    ///
    /// See [`get`] for usage.
    ///
    /// [`get`]: #method.get
    pub fn get_at<V>(&self, level: Level) -> Result<UninitAllocation<V>, Failure> {
        if mem::size_of::<V>() == 0 {
            let fake = self.zst_fake_alloc();
            // Note: zst_fake_alloc is a noop on the level, we may as well check after.
            if fake.level != level {
                return Err(Failure::Mismatch {
                    observed: fake.level,
                });
            }
            return Ok(fake);
        }

        let layout = Layout::new::<V>();
        let UninitAllocation { uninit, level, } = self.try_alloc_at(layout, level.0)?;

        Ok(UninitAllocation {
            // UNWRAP: it has exactly the requested size of `V`.
            uninit: uninit.cast().ok().unwrap(),
            level,
        })
    }

    /// Allocate a [`Box`].
    ///
    /// This will allocate some memory with the correct layout for a [`Box`], then place the
    /// provided value into the allocation by constructing an [`Box`].
    ///
    /// [`Box`]: ../boxed/struct.Box.html
    pub fn boxed<V>(&self, val: V) -> Option<Box<'_, V>> {
        let alloc = self.get::<V>()?;
        Some(Box::new(val, alloc.uninit))
    }

    /// Allocate a [`FixedVec`].
    ///
    /// This will allocate some memory with the correct layout for a [`FixedVec`] of the given
    /// capacity (in elements) and wrap it. Returns `None` if it is not possible to allocate the
    /// layout.
    ///
    /// [`FixedVec`]: ../fixed_vec/struct.FixedVec.html
    pub fn fixed_vec<V>(&self, capacity: usize) -> Option<FixedVec<'_, V>> {
        let size = mem::size_of::<V>().checked_mul(capacity)?;
        let layout = Layout::from_size_align(size, mem::align_of::<V>()).ok()?;

        let uninit = if layout.size() == 0 {
            Uninit::empty()
        } else {
            self.get_layout(layout)?
                .uninit
                .cast_slice()
                .unwrap()
        };

        Some(FixedVec::new(uninit))
    }

    /// Allocate an [`Rc`].
    ///
    /// This will allocate some memory with the correct layout for an [`Rc`], then place the
    /// provided value into the allocation by constructing an [`Rc`].
    ///
    /// [`Rc`]: ../rc/struct.Rc.html
    pub fn rc<V>(&self, val: V) -> Option<Rc<'_, V>> {
        let alloc = self.get_layout(Rc::<V>::layout())?;
        Some(Rc::new(val, alloc.uninit))
    }

    /// Observe the current level.
    ///
    /// Keep in mind that concurrent usage of the same slab may modify the level before you are
    /// able to use it in `alloc_at`. Calling this method provides also no other guarantees on
    /// synchronization of memory accesses, only that the values observed by the caller are a
    /// monotonically increasing seequence.
    pub fn level(&self) -> Level {
        Level(self.consumed.load(Ordering::SeqCst))
    }

    fn try_alloc(&self, layout: Layout)
        -> Option<UninitAllocation<'_>>
    {
        // Guess zero, this will fail when we try to access it and it isn't.
        let mut consumed = 0;
        loop {
            match self.try_alloc_at(layout, consumed) {
                Ok(alloc) => return Some(alloc),
                Err(Failure::Exhausted) => return None,
                Err(Failure::Mismatch{ observed }) => consumed = observed.0,
            }
        }
    }

    /// Try to allocate some layout with a precise base location.
    ///
    /// The base location is the currently consumed byte count, without correction for the
    /// alignment of the allocation. This will succeed if it can be allocate exactly at the
    /// expected location.
    ///
    /// # Panics
    /// This function panics if `expect_consumed` is larger than `length`.
    fn try_alloc_at(&self, layout: Layout, expect_consumed: usize)
        -> Result<UninitAllocation<'_>, Failure>
    {
        assert!(layout.size() > 0);
        let length = mem::size_of::<T>();
        let base_ptr = self.storage.get()
            as *mut T
            as *mut u8;

        let alignment = layout.align();
        let requested = layout.size();

        // Ensure no overflows when calculating offets within.
        assert!(expect_consumed <= length);

        let available = length.checked_sub(expect_consumed).unwrap();
        let ptr_to = base_ptr.wrapping_add(expect_consumed);
        let offset = ptr_to.align_offset(alignment);

        if requested > available.saturating_sub(offset) {
            return Err(Failure::Exhausted); // exhausted
        }

        // `size` can not be zero, saturation will thus always make this true.
        assert!(offset < available);
        let at_aligned = expect_consumed.checked_add(offset).unwrap();
        let new_consumed = at_aligned.checked_add(requested).unwrap();
        // new_consumed
        //    = consumed + offset + requested  [lines above]
        //   <= consumed + available  [bail out: exhausted]
        //   <= length  [first line of loop]
        // So it's ok to store `allocated` into `consumed`.
        assert!(new_consumed <= length);
        assert!(at_aligned < length);

        // Try to actually allocate.
        match self.bump(expect_consumed, new_consumed) {
            Ok(()) => (),
            Err(observed) => {
                // Someone else was faster, if you want it then recalculate again.
                return Err(Failure::Mismatch { observed: Level(observed) });
            },
        }

        let aligned = unsafe {
            // SAFETY:
            // * `0 <= at_aligned < length` in bounds as checked above.
            (base_ptr as *mut u8).add(at_aligned)
        };

        let ptr = NonNull::new(aligned).unwrap();
        let uninit = unsafe {
            // SAFETY: memory is valid and unaliased for the lifetime of our reference.
            Uninit::from_memory(ptr.cast(), requested)
        };

        Ok(UninitAllocation {
            uninit,
            level: Level(new_consumed),
        })
    }

    /// Allocate a value for the lifetime of the allocator.
    ///
    /// The value is leaked in the sense that
    ///
    /// 1. the drop implementation of the allocated value is never called;
    /// 2. reusing the memory for another allocation in the same `Slab` requires manual unsafe code
    ///    to handle dropping and reinitialization.
    ///
    /// However, it does not mean that the underlying memory used for the allocated value is never
    /// reclaimed. If the `Slab` itself is a stack value then it will get reclaimed together with
    /// it.
    ///
    /// ## Safety notice
    ///
    /// It is important to understand that it is undefined behaviour to reuse the allocation for
    /// the *whole lifetime* of the returned reference. That is, dropping the allocation in-place
    /// while the reference is still within its lifetime comes with the exact same unsafety caveats
    /// as [`ManuallyDrop::drop`].
    ///
    /// ```
    /// # use static_alloc::Slab;
    /// #[derive(Debug, Default)]
    /// struct FooBar {
    ///     // ...
    /// # _private: [u8; 1],
    /// }
    ///
    /// let local: Slab<[FooBar; 3]> = Slab::uninit();
    /// let one = local.leak(FooBar::default()).unwrap();
    ///
    /// // Dangerous but justifiable.
    /// let one = unsafe {
    ///     // Ensures there is no current mutable borrow.
    ///     core::ptr::drop_in_place(&mut *one);
    /// };
    /// ```
    ///
    /// ## Usage
    ///
    /// ```
    /// use static_alloc::Slab;
    ///
    /// let local: Slab<[u64; 3]> = Slab::uninit();
    ///
    /// let one = local.leak(0_u64).unwrap();
    /// assert_eq!(*one, 0);
    /// *one = 42;
    /// ```
    ///
    /// ## Limitations
    ///
    /// Only sized values can be allocated in this manner for now, unsized values are blocked on
    /// stabilization of [`ptr::slice_from_raw_parts`]. We can not otherwise get a fat pointer to
    /// the allocated region.
    ///
    /// [`ptr::slice_from_raw_parts`]: https://github.com/rust-lang/rust/issues/36925
    /// [`ManuallyDrop::drop`]: https://doc.rust-lang.org/beta/std/mem/struct.ManuallyDrop.html#method.drop
    pub fn leak<V>(&self, val: V) -> Result<&mut V, LeakError<V>> {
        match self.get::<V>() {
            Some(alloc) => Ok(alloc.uninit.init(val)),
            None => Err(LeakError::new(val, Failure::Exhausted)),
        }
    }

    /// Allocate a value with a precise location.
    ///
    /// See [`leak`] for basics on allocation of values.
    ///
    /// The level is an identifer for a base location (more at [`level`]). This will succeed if it
    /// can be allocate exactly at the expected location.
    ///
    /// This method will return the new level of the slab allocator. A next allocation at the
    /// returned level will be placed next to this allocation, only separated by necessary padding
    /// from alignment. In particular, this is the same strategy as applied for the placement of
    /// `#[repr(C)]` struct members. (Except for the final padding at the last member to the full
    /// struct alignment.)
    ///
    /// ## Usage
    ///
    /// ```
    /// use static_alloc::Slab;
    ///
    /// let local: Slab<[u64; 3]> = Slab::uninit();
    ///
    /// let base = local.level();
    /// let (one, level) = local.leak_at(1_u64, base).unwrap();
    /// // Will panic when an allocation happens in between.
    /// let (two, _) = local.leak_at(2_u64, level).unwrap();
    ///
    /// assert_eq!((one as *const u64).wrapping_offset(1), two);
    /// ```
    ///
    /// [`leak`]: #method.leak
    /// [`level`]: #method.level
    pub fn leak_at<V>(&self, val: V, level: Level)
        -> Result<(&mut V, Level), LeakError<V>>
    {
        let alloc = match self.get_at::<V>(level) {
            Ok(alloc) => alloc,
            Err(err) => return Err(LeakError::new(val, err)),
        };

        let mutref = alloc.uninit.init(val);
        Ok((mutref, alloc.level))
    }

    /// 'Allocate' a ZST.
    fn zst_fake_alloc<Z>(&self) -> UninitAllocation<Z> {
        UninitAllocation {
            uninit: Uninit::invent_for_zst(),
            level: self.level(),
        }
    }

    /// Try to bump the monotonic, atomic consume counter.
    ///
    /// This is the only place modifying `self.consumed`.
    ///
    /// Returns `Ok` if the consume counter was as expected. Monotonicty and atomicity guarantees
    /// to the caller that no overlapping range can succeed as well. This allocates the range to
    /// the caller.
    ///
    /// Returns the observed consume counter in an `Err` if it was not as expected.
    ///
    /// ## Panics
    /// This function panics if either argument exceeds the byte length of the underlying memory.
    /// It also panics if the expected value is larger than the new value.
    fn bump(&self, expect_consumed: usize, new_consumed: usize) -> Result<(), usize> {
        assert!(expect_consumed <= new_consumed);
        assert!(new_consumed <= mem::size_of::<T>());

        let observed = self.consumed.compare_and_swap(
            expect_consumed,
            new_consumed,
            Ordering::SeqCst);
        if expect_consumed == observed {
            Ok(())
        } else {
            Err(observed)
        }
    }
}

impl<T> LeakError<T> {
    fn new(val: T, failure: Failure) -> Self {
        LeakError { val, failure, }
    }

    /// Inspect the cause of this error.
    pub fn kind(&self) -> Failure {
        self.failure
    }

    /// Retrieve the value that could not be allocated.
    pub fn into_inner(self) -> T {
        self.val
    }
}

// SAFETY: at most one thread gets a pointer to each chunk of data.
unsafe impl<T> Sync for Slab<T> { }

unsafe impl<T> GlobalAlloc for Slab<T> {
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        Slab::alloc(self, layout)
            .map(NonNull::as_ptr)
            .unwrap_or_else(null_mut)
    }

    unsafe fn dealloc(&self, _ptr: *mut u8, _layout: Layout) {
        // We are a slab allocator and do not deallocate.
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn zst_no_drop() {
        #[derive(Debug)]
        struct PanicOnDrop;

        impl Drop for PanicOnDrop {
            fn drop(&mut self) {
                panic!("No instance of this should ever get dropped");
            }
        }

        let alloc = Slab::<()>::uninit();
        let _ = alloc.leak(PanicOnDrop).unwrap();
    }
}