1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
//! Contains the `FixedVec` implementation.
//!
//! [See `FixedVec` for the main information][`FixedVec`].
//!
//! [`FixedVec`]: struct.FixedVec.html
use core::{borrow, cmp, hash, ops, ptr, slice};
use crate::uninit::Uninit;

/// A `Vec`-like structure that does not manage its allocation.
///
/// This vector type will never (re-)allocate but it can also not free underused memory. As opposed
/// to other similar crates, it does require and additional bounds on its type parameter as it
/// truly manages uninitialized memory to store instances.
///
/// # Basic Usage
///
/// # Advanaced Usage
///
/// One focus of the library is composability. It should not be surprising that `FixedVec`
/// interacts with the [`Slab`] allocator, which implements a specialized interface providing the
/// [`Uninit`] type instead of a raw `*const u8`. Hence, the `FixedVec` can use this instead of its
/// own local stack variables.
///
/// ```
/// # use static_alloc::{FixedVec, Slab};
/// # use core::alloc::Layout;
/// let alloc: Slab<[u8; 1 << 12]> = Slab::uninit();
/// let some_usize = alloc.leak(0_usize).unwrap();
///
/// let mut vec: FixedVec<&usize> = FixedVec::from_available(
///     alloc.get_layout(Layout::new::<[&usize; 1]>()).unwrap().uninit);
/// // Push the reference to the other allocation.
/// vec.push(some_usize);
///
/// // … do something else
///
/// // Ensure lifetimes work out.
/// drop(vec);
/// ```
///
/// [`Slab`]: ../slab/struct.Slab.html
/// [`Uninit`]: ../uninit/struct.Uninit.html
pub struct FixedVec<'a, T> {
    uninit: Uninit<'a, [T]>,
    length: usize,
}

impl<T> FixedVec<'_, T> {
    /// Shorten the vector to a maximum length.
    ///
    /// If the length is not larger than `len` this has no effect.
    ///
    /// The tail of the vector is dropped starting from the last element. This is opposite to
    /// ([WIP] interface does not yet exist) `.drain(len..).for_each(drop)`.
    ///
    /// ## Example
    ///
    /// ```
    /// # use core::mem::MaybeUninit;
    /// # use static_alloc::{FixedVec, Uninit};
    ///
    /// let mut memory: MaybeUninit<[usize; 4]> = MaybeUninit::uninit();
    /// let uninit = Uninit::from(&mut memory).cast_slice().unwrap();
    /// let mut vec = FixedVec::new(uninit);
    ///
    /// vec.push(0usize);
    /// vec.push(1usize);
    /// vec.push(2usize);
    ///
    /// assert_eq!(vec.as_slice(), [0, 1, 2]);
    /// vec.truncate(1);
    /// assert_eq!(vec.as_slice(), [0]);
    /// ```
    pub fn truncate(&mut self, len: usize) {
        struct SetLenOnDrop<'a> {
            len: &'a mut usize,
            local_len: usize,
        }

        impl Drop for SetLenOnDrop<'_> {
            fn drop(&mut self) {
                *self.len = self.local_len;
            }
        }

        let mut ptr = self.end_mut_ptr();
        let current_length = self.length;
        let mut set_len = SetLenOnDrop { len: &mut self.length, local_len: current_length };

        for _ in len..current_length {
            set_len.local_len -= 1;

            unsafe {
                ptr = ptr.offset(-1);
                ptr::drop_in_place(ptr);
            }
        }
    }

    /// Extracts a slice containing the entire vector.
    pub fn as_slice(&self) -> &[T] {
        unsafe {
            // SAFETY: length is the number of initialized elements.
            slice::from_raw_parts(self.uninit.as_begin_ptr(), self.length)
        }
    }

    /// Extracts the mutable slice containing the entire vector.
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        unsafe {
            // SAFETY:
            // * length is the number of initialized elements.
            // * unaliased since we take ourselves by `mut` and `uninit` does the rest.
            slice::from_raw_parts_mut(self.uninit.as_begin_ptr(), self.length)
        }
    }

    /// Remove all elements.
    ///
    /// This is an alias for [`truncate(0)`][truncate].
    ///
    /// [truncate]: #method.truncate
    pub fn clear(&mut self) {
        self.truncate(0)
    }

    /// Returns the number of elements in the vector.
    pub fn len(&self) -> usize {
        self.length
    }

    /// Set the raw length.
    ///
    /// ## Safety
    /// * `new_len` must be smaller or equal `self.capacity()`
    /// * The caller must ensure that all newly referenced elements are properly initialized.
    pub unsafe fn set_len(&mut self, new_len: usize) {
        self.length = new_len;
    }

    /// Returns the number of elements the vector can hold.
    pub fn capacity(&self) -> usize {
        self.uninit.capacity()
    }

    /// Returns `true` if the vector contains no elements.
    pub fn is_empty(&self) -> bool {
        self.length == 0
    }

    /// Appends an element to the back of a collection.
    ///
    /// Return `Err(val)` if it is not possible to append the element.
    ///
    /// ```
    /// use static_alloc::{FixedVec, Uninit};
    /// use core::mem::MaybeUninit;
    ///
    /// // Only enough storage for one element.
    /// let mut allocation: MaybeUninit<[u32; 1]> = MaybeUninit::uninit();
    /// let uninit = Uninit::from_maybe_uninit(&mut allocation);
    /// let mut vec = FixedVec::from_available(uninit);
    ///
    /// // First push succeeds.
    /// assert_eq!(vec.push(1), Ok(()));
    ///
    /// // The second push fails.
    /// assert_eq!(vec.push(2), Err(2));
    ///
    /// ```
    pub fn push(&mut self, val: T) -> Result<(), T> {
        if self.length == usize::max_value() {
            return Err(val);
        }

        let init = match self.head_tail_mut().1.split_first() {
            Some(init) => init,
            None => return Err(val),
        };

        init.init(val);
        self.length += 1;

        Ok(())
    }

    /// Removes the last element from a vector and returns it, or `None` if it is empty.
    pub fn pop(&mut self) -> Option<T> {
        if self.length == 0 {
            return None;
        }

        let last = self.head_tail_mut().0.split_last().unwrap();
        let val = unsafe {
            // SAFETY: initialized and no reference of any kind exists to it.
            ptr::read(last.as_ptr())
        };
        self.length -= 1;
        Some(val)
    }

    /// Split the capacity of the collection into two at a given index.
    ///
    /// In contrast to `Vec::split_off` calling this method reduces the capacity of `self` to `at`.
    ///
    /// ## Panics
    /// This method panics if `at > self.capacity()`.
    pub fn split_and_shrink_to(&mut self, at: usize) -> Self {
        assert!(at <= self.capacity(), "`at` out of bounds");
        // `self.length` is always smaller than `split_at`.
        let new_uninit = self.uninit.split_at(at).unwrap();
        // The first `at` elements stay in this vec.
        let new_len = self.length.saturating_sub(at);
        self.length = self.length - new_len;
        FixedVec {
            uninit: new_uninit,
            length: new_len,
        }
    }

    /// Extend the vector with as many elements as fit.
    ///
    /// Returns the iterator with all elements that were not pushed into the vector.
    pub fn fill<I: IntoIterator<Item=T>>(&mut self, iter: I)
        -> I::IntoIter
    {
        let unused = self.capacity() - self.len();
        let mut iter = iter.into_iter();
        for item in iter.by_ref().take(unused) {
            unsafe {
                *self.end_mut_ptr() = item;
                self.set_len(self.length + 1);
            }
        }
        iter
    }

    fn head_tail_mut(&mut self) -> (Uninit<'_, [T]>, Uninit<'_, [T]>) {
        // Borrow, do not affect the actual allocation by throwing away possible elements.
        let mut all = self.uninit.borrow_mut();
        // This must always be possible. `self.length` is nevery greater than the capacity.
        let tail = all.split_at(self.length).unwrap();
        (all, tail)
    }

    fn end_mut_ptr(&mut self) -> *mut T {
        unsafe { self.as_mut_ptr().add(self.length) }
    }
}

impl<'a, T> FixedVec<'a, T> {
    /// Create a `FixedVec` in a pre-allocated region.
    ///
    /// The capacity will be that of the underlying allocation.
    pub fn new(uninit: Uninit<'a, [T]>) -> Self {
        FixedVec {
            uninit,
            length: 0,
        }
    }

    /// Create a `FixedVec` with as large of a capacity as available.
    ///
    /// When no aligned slice can be create within the provided memory then the constructor will
    /// fallback to an empty dangling slice.
    ///
    /// This is only a utility function.
    pub fn from_available<U>(generic: Uninit<'a, U>) -> Self {
        let mut uninit = generic.as_memory();
        let slice = uninit.split_slice().unwrap_or_else(Uninit::empty);
        Self::new(slice)
    }

    /// Return trailing bytes that can not be used by the `FixedVec`.
    ///
    /// This operation is idempotent.
    pub fn shrink_to_fit(&mut self) -> Uninit<'a, ()> {
        self.uninit.shrink_to_fit()
    }
}

impl<T> ops::Deref for FixedVec<'_, T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        self.as_slice()
    }
}

impl<T> ops::DerefMut for FixedVec<'_, T> {
    fn deref_mut(&mut self) -> &mut [T] {
        self.as_mut_slice()
    }
}

impl<T> Drop for FixedVec<'_, T> {
    fn drop(&mut self) {
        unsafe {
            ptr::drop_in_place(self.as_mut_slice())
        }
    }
}

impl<T, I> ops::Index<I> for FixedVec<'_, T>
    where I: slice::SliceIndex<[T]>,
{
    type Output = I::Output;

    fn index(&self, idx: I) -> &I::Output {
        ops::Index::index(&**self, idx)
    }
}

impl<T, I> ops::IndexMut<I> for FixedVec<'_, T>
    where I: slice::SliceIndex<[T]>,
{
    fn index_mut(&mut self, idx: I) -> &mut I::Output {
        ops::IndexMut::index_mut(&mut**self, idx)
    }
}

impl<'a, 'b, T: PartialEq> PartialEq<FixedVec<'b, T>> for FixedVec<'a, T> {
    #[inline]
    fn eq(&self, other: &FixedVec<T>) -> bool {
        PartialEq::eq(&**self, &**other)
    }
    #[inline]
    fn ne(&self, other: &FixedVec<T>) -> bool {
        PartialEq::ne(&**self, &**other)
    }
}

impl<'a, 'b, T: PartialOrd> PartialOrd<FixedVec<'b, T>> for FixedVec<'a, T> {
    #[inline]
    fn partial_cmp(&self, other: &FixedVec<T>) -> Option<cmp::Ordering> {
        PartialOrd::partial_cmp(&**self, &**other)
    }
    #[inline]
    fn lt(&self, other: &FixedVec<T>) -> bool {
        PartialOrd::lt(&**self, &**other)
    }
    #[inline]
    fn le(&self, other: &FixedVec<T>) -> bool {
        PartialOrd::le(&**self, &**other)
    }
    #[inline]
    fn ge(&self, other: &FixedVec<T>) -> bool {
        PartialOrd::ge(&**self, &**other)
    }
    #[inline]
    fn gt(&self, other: &FixedVec<T>) -> bool {
        PartialOrd::gt(&**self, &**other)
    }
}

impl<T: Ord> Ord for FixedVec<'_, T> {
    #[inline]
    fn cmp(&self, other: &FixedVec<T>) -> cmp::Ordering {
        Ord::cmp(&**self, &**other)
    }
}

impl<T: Eq> Eq for FixedVec<'_, T> { }

impl<T: hash::Hash> hash::Hash for FixedVec<'_, T> {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        hash::Hash::hash(&**self, state)
    }
}

impl<T> borrow::Borrow<[T]> for FixedVec<'_, T> {
    fn borrow(&self) -> &[T] {
        &**self
    }
}

impl<T> borrow::BorrowMut<[T]> for FixedVec<'_, T> {
    fn borrow_mut(&mut self) -> &mut [T] {
        &mut **self
    }
}

impl<T> AsRef<[T]> for FixedVec<'_, T> {
    fn as_ref(&self) -> &[T] {
        &**self
    }
}

impl<T> AsMut<[T]> for FixedVec<'_, T> {
    fn as_mut(&mut self) -> &mut [T] {
        &mut **self
    }
}

#[cfg(test)]
mod tests {
    use super::FixedVec;
    use crate::Uninit;

    use core::mem::MaybeUninit;
    use core::sync::atomic::{AtomicUsize, Ordering};

    #[test]
    fn init_and_use() {
        #[derive(Debug, PartialEq, Eq)]
        struct Foo(usize);

        const CAPACITY: usize = 30;

        let mut allocation: MaybeUninit<[Foo; CAPACITY]> = MaybeUninit::uninit();
        let mut vec = FixedVec::from_available((&mut allocation).into());

        assert_eq!(vec.capacity(), CAPACITY);
        assert_eq!(vec.len(), 0);
        for i in 0..CAPACITY {
            assert_eq!(vec.push(Foo(i)), Ok(()));
        }

        assert_eq!(vec.capacity(), CAPACITY);
        assert_eq!(vec.len(), CAPACITY);

        for i in (0..CAPACITY).rev() {
            assert_eq!(vec.pop(), Some(Foo(i)));
        }

        assert_eq!(vec.capacity(), CAPACITY);
        assert_eq!(vec.len(), 0);
    }

    #[test]
    fn zst_drop() {
        const COUNT: usize = 30;
        static DROP_COUNTER: AtomicUsize = AtomicUsize::new(0);
        struct HasDrop(usize);

        impl Drop for HasDrop {
            fn drop(&mut self) {
                DROP_COUNTER.fetch_add(1, Ordering::SeqCst);
            }
        }


        let mut allocation: MaybeUninit<[HasDrop; COUNT]> = MaybeUninit::uninit();
        let mut vec = FixedVec::from_available((&mut allocation).into());

        for i in 0..COUNT {
            assert!(vec.push(HasDrop(i)).is_ok());
        }

        drop(vec);
        assert_eq!(DROP_COUNTER.load(Ordering::SeqCst), COUNT);
    }

    #[test]
    fn zst() {
        struct Zst;
        let vec = FixedVec::<Zst>::new(Uninit::empty());
        assert_eq!(vec.capacity(), usize::max_value());
    }

    #[test]
    fn split_and_shrink() {
        // Zeroed because we want to test the contents.
        let mut allocation: MaybeUninit<[u16; 8]> = MaybeUninit::zeroed();

        let mut aligned = Uninit::from(&mut allocation).as_memory();
        let _ = aligned.split_at_byte(15);

        let mut vec = FixedVec::from_available(aligned);
        let mut second = vec.split_and_shrink_to(4);
        let tail = second.shrink_to_fit();

        assert_eq!(vec.capacity(), 4);
        assert_eq!(vec.shrink_to_fit().size(), 0);
        assert_eq!(second.capacity(), 3);
        assert_eq!(second.shrink_to_fit().size(), 0);
        assert_eq!(tail.size(), 1);

        let _ = tail.cast::<u8>().unwrap().init(0xFF);
        (0_u16..4).for_each(|v| assert!(vec.push(v).is_ok()));
        (4..7).for_each(|v| assert!(second.push(v).is_ok()));

        assert_eq!(vec.len(), 4);
        assert_eq!(second.len(), 3);

        drop(vec);
        drop(second);
        assert_eq!(
            &unsafe { *allocation.as_ptr() }[..7],
            [0, 1, 2, 3, 4, 5, 6]);
    }

    /// Tests panics during truncation behave as expected.
    ///
    /// Unwinding started in a panic during truncation should not effect `Drop` calls when the
    /// `Vec` itself is hit by the unwinding. We test this by voluntarily triggering an unwinding
    /// and counting the number of values which have been dropped regularly (that is, during the
    /// `Drop` of `Vec` when it is unwound).
    ///
    /// Note that this test is already `should_panic` and the observable failure is thus an abort
    /// from a double panic!
    #[test]
    #[should_panic = "Trigger triggered"]
    fn drop_safe_in_truncation() {
        use core::cell::Cell;

        #[derive(Debug)]
        struct Trigger<'a> {
            panic_on_drop: bool,
            dropped_counter: &'a Cell<usize>,
        }

        impl Drop for Trigger<'_> {
            fn drop(&mut self) {
                if self.panic_on_drop { panic!("Trigger triggered") }
                // Record this as a normal drop.
                self.dropped_counter.set(self.dropped_counter.get() + 1);
            }
        }

        struct AbortMismatchedDropCount<'a> {
            counter: &'a Cell<usize>,
            expected: usize,
        }

        impl Drop for AbortMismatchedDropCount<'_> {
            fn drop(&mut self) {
                struct ForceDupPanic;

                impl Drop for ForceDupPanic {
                    fn drop(&mut self) { panic!() }
                }

                if self.expected != self.counter.get() {
                    // For duplicate panic, and thus abort
                    let _x = ForceDupPanic;
                    panic!();
                }
            }
        }

        let mut allocation: MaybeUninit<[u8; 512]> = MaybeUninit::zeroed();
        let drops = Cell::new(0);

        // Is `Drop`ed *after* the Vec, and will record the number of usually dropped Triggers.
        let _abort_mismatch_raii = AbortMismatchedDropCount {
            counter: &drops,
            expected: 2,
        };

        let uninit = Uninit::from(&mut allocation).as_memory();
        let mut vec = FixedVec::from_available(uninit);

        vec.push(Trigger { panic_on_drop: false, dropped_counter: &drops }).unwrap();
        // This one is within the truncated tail but is not dropped until unwind as truncate
        // panics. If we were to skip dropping all values of the tail in unwind we'd notice.
        vec.push(Trigger { panic_on_drop: false, dropped_counter: &drops }).unwrap();
        vec.push(Trigger { panic_on_drop: true, dropped_counter: &drops }).unwrap();

        // Trigger!
        vec.truncate(1);
    }
}