1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
use crate::angle::{Angle, PI, PI_FOURTH, PI_HALF};
use crate::time::GMST;
pub trait ConstrainedAngle {
fn new(angle: &Angle) -> Self;
fn value(&self) -> Angle;
}
#[derive(Debug, Copy, Clone)]
pub struct ZenithAngle(pub Angle);
impl ConstrainedAngle for ZenithAngle {
fn new(angle: &Angle) -> Self {
let rad = angle.to_rad();
if !(0.0..=PI).contains(&rad) {
panic!("ZenithAngle must be between 0 and pi!")
}
Self(*angle)
}
fn value(&self) -> Angle {
self.0
}
}
#[derive(Debug, Copy, Clone)]
pub struct Declination(pub Angle);
impl ConstrainedAngle for Declination {
fn new(angle: &Angle) -> Self {
let rad = angle.to_rad();
if !(-PI_HALF..=PI_HALF).contains(&rad) {
panic!("Declination must be between -pi/2 and pi/2!")
}
Self(*angle)
}
fn value(&self) -> Angle {
self.0
}
}
#[derive(Debug, Copy, Clone)]
pub struct Altitude(pub Angle);
impl ConstrainedAngle for Altitude {
fn new(angle: &Angle) -> Self {
let rad = angle.to_rad();
if !(-PI_HALF..=PI_HALF).contains(&rad) {
panic!("Altitude must be between -pi/2 and pi/2!")
}
Self(*angle)
}
fn value(&self) -> Angle {
self.0
}
}
#[derive(Debug, Copy, Clone)]
pub struct Latitude(pub Angle);
impl ConstrainedAngle for Latitude {
fn new(angle: &Angle) -> Self {
let rad = angle.to_rad();
if !(-PI_HALF..=PI_HALF).contains(&rad) {
panic!("Latitude must be between -pi/2 and pi/2!")
}
Self(*angle)
}
fn value(&self) -> Angle {
self.0
}
}
#[derive(Debug, Copy, Clone)]
pub struct RightAscension(pub Angle);
#[derive(Debug, Copy, Clone)]
pub struct Azimuth(pub Angle);
#[derive(Debug, Copy, Clone)]
pub struct Longitude(pub Angle);
#[derive(Debug, Copy, Clone)]
#[allow(dead_code)]
pub struct Cartesian {
pub x: f64,
pub y: f64,
pub z: f64,
}
#[derive(Debug, Copy, Clone)]
pub struct Geographic {
pub latitude: Latitude,
pub longitude: Longitude,
}
#[derive(Debug, Copy, Clone)]
#[allow(dead_code)]
pub struct Polar {
pub radius: f64,
pub angle: Angle,
}
#[derive(Debug, Copy, Clone)]
pub struct Equitorial {
pub right_ascension: RightAscension,
pub declination: Declination,
}
#[derive(Debug, Copy, Clone)]
pub struct Horizontal {
pub altitude: Altitude,
pub azimuth: Azimuth,
}
impl Horizontal {
pub fn from_equitorial(eq: &Equitorial, geo: &Geographic, sidereal_time: &GMST) -> Self {
let hour_local: Angle = sidereal_time.0 + geo.longitude.0 - eq.right_ascension.0;
let x_horiz: f64 = -(geo.latitude.0.sin()) * (eq.declination.0.cos()) * (hour_local.cos())
+ geo.latitude.0.cos() * (eq.declination.0.sin());
let y_horiz: f64 = eq.declination.0.cos() * hour_local.sin();
let azimuth_rad: Angle = Angle::Radian(-(y_horiz.atan2(x_horiz)));
let altitude_rad: Angle = Angle::Radian(
(geo.latitude.0.sin() * eq.declination.0.sin()
+ geo.latitude.0.cos() * eq.declination.0.cos() * hour_local.cos())
.asin(),
);
Self {
altitude: Altitude(azimuth_rad),
azimuth: Azimuth(altitude_rad),
}
}
pub fn stereo_project(&self) -> Polar {
Polar {
radius: 2.0 * (PI_FOURTH - self.altitude.0.to_rad() / 2.0).tan(),
angle: self.azimuth.0,
}
}
}