1use crate::models::llm::{
12 GenerationDelta, LLMMessage, LLMMessageContent, LLMMessageImageSource, LLMMessageTypedContent,
13 LLMTokenUsage, LLMTool,
14};
15use crate::models::model_pricing::{ContextAware, ContextPricingTier, ModelContextInfo};
16use serde::{Deserialize, Serialize};
17use serde_json::{Value, json};
18use uuid::Uuid;
19
20#[derive(Serialize, Deserialize, Clone, Debug, Default, PartialEq)]
26pub struct OpenAIConfig {
27 pub api_endpoint: Option<String>,
28 pub api_key: Option<String>,
29}
30
31impl OpenAIConfig {
32 pub fn with_api_key(api_key: impl Into<String>) -> Self {
34 Self {
35 api_key: Some(api_key.into()),
36 api_endpoint: None,
37 }
38 }
39
40 pub fn from_provider_auth(auth: &crate::models::auth::ProviderAuth) -> Option<Self> {
42 match auth {
43 crate::models::auth::ProviderAuth::Api { key } => Some(Self::with_api_key(key)),
44 crate::models::auth::ProviderAuth::OAuth { .. } => None, }
46 }
47
48 pub fn with_provider_auth(mut self, auth: &crate::models::auth::ProviderAuth) -> Option<Self> {
50 match auth {
51 crate::models::auth::ProviderAuth::Api { key } => {
52 self.api_key = Some(key.clone());
53 Some(self)
54 }
55 crate::models::auth::ProviderAuth::OAuth { .. } => None, }
57 }
58}
59
60#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Default)]
66pub enum OpenAIModel {
67 #[serde(rename = "o3-2025-04-16")]
69 O3,
70 #[serde(rename = "o4-mini-2025-04-16")]
71 O4Mini,
72
73 #[default]
74 #[serde(rename = "gpt-5-2025-08-07")]
75 GPT5,
76 #[serde(rename = "gpt-5.1-2025-11-13")]
77 GPT51,
78 #[serde(rename = "gpt-5-mini-2025-08-07")]
79 GPT5Mini,
80 #[serde(rename = "gpt-5-nano-2025-08-07")]
81 GPT5Nano,
82
83 Custom(String),
84}
85
86impl OpenAIModel {
87 pub fn from_string(s: &str) -> Result<Self, String> {
88 serde_json::from_value(serde_json::Value::String(s.to_string()))
89 .map_err(|_| "Failed to deserialize OpenAI model".to_string())
90 }
91
92 pub const DEFAULT_SMART_MODEL: OpenAIModel = OpenAIModel::GPT5;
94
95 pub const DEFAULT_ECO_MODEL: OpenAIModel = OpenAIModel::GPT5Mini;
97
98 pub const DEFAULT_RECOVERY_MODEL: OpenAIModel = OpenAIModel::GPT5Mini;
100
101 pub fn default_smart_model() -> String {
103 Self::DEFAULT_SMART_MODEL.to_string()
104 }
105
106 pub fn default_eco_model() -> String {
108 Self::DEFAULT_ECO_MODEL.to_string()
109 }
110
111 pub fn default_recovery_model() -> String {
113 Self::DEFAULT_RECOVERY_MODEL.to_string()
114 }
115}
116
117impl ContextAware for OpenAIModel {
118 fn context_info(&self) -> ModelContextInfo {
119 let model_name = self.to_string();
120
121 if model_name.starts_with("o3") {
122 return ModelContextInfo {
123 max_tokens: 200_000,
124 pricing_tiers: vec![ContextPricingTier {
125 label: "Standard".to_string(),
126 input_cost_per_million: 2.0,
127 output_cost_per_million: 8.0,
128 upper_bound: None,
129 }],
130 approach_warning_threshold: 0.8,
131 };
132 }
133
134 if model_name.starts_with("o4-mini") {
135 return ModelContextInfo {
136 max_tokens: 200_000,
137 pricing_tiers: vec![ContextPricingTier {
138 label: "Standard".to_string(),
139 input_cost_per_million: 1.10,
140 output_cost_per_million: 4.40,
141 upper_bound: None,
142 }],
143 approach_warning_threshold: 0.8,
144 };
145 }
146
147 if model_name.starts_with("gpt-5-mini") {
148 return ModelContextInfo {
149 max_tokens: 400_000,
150 pricing_tiers: vec![ContextPricingTier {
151 label: "Standard".to_string(),
152 input_cost_per_million: 0.25,
153 output_cost_per_million: 2.0,
154 upper_bound: None,
155 }],
156 approach_warning_threshold: 0.8,
157 };
158 }
159
160 if model_name.starts_with("gpt-5-nano") {
161 return ModelContextInfo {
162 max_tokens: 400_000,
163 pricing_tiers: vec![ContextPricingTier {
164 label: "Standard".to_string(),
165 input_cost_per_million: 0.05,
166 output_cost_per_million: 0.40,
167 upper_bound: None,
168 }],
169 approach_warning_threshold: 0.8,
170 };
171 }
172
173 if model_name.starts_with("gpt-5") {
174 return ModelContextInfo {
175 max_tokens: 400_000,
176 pricing_tiers: vec![ContextPricingTier {
177 label: "Standard".to_string(),
178 input_cost_per_million: 1.25,
179 output_cost_per_million: 10.0,
180 upper_bound: None,
181 }],
182 approach_warning_threshold: 0.8,
183 };
184 }
185
186 ModelContextInfo::default()
187 }
188
189 fn model_name(&self) -> String {
190 match self {
191 OpenAIModel::O3 => "O3".to_string(),
192 OpenAIModel::O4Mini => "O4-mini".to_string(),
193 OpenAIModel::GPT5 => "GPT-5".to_string(),
194 OpenAIModel::GPT51 => "GPT-5.1".to_string(),
195 OpenAIModel::GPT5Mini => "GPT-5 Mini".to_string(),
196 OpenAIModel::GPT5Nano => "GPT-5 Nano".to_string(),
197 OpenAIModel::Custom(name) => format!("Custom ({})", name),
198 }
199 }
200}
201
202impl std::fmt::Display for OpenAIModel {
203 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
204 match self {
205 OpenAIModel::O3 => write!(f, "o3-2025-04-16"),
206 OpenAIModel::O4Mini => write!(f, "o4-mini-2025-04-16"),
207 OpenAIModel::GPT5Nano => write!(f, "gpt-5-nano-2025-08-07"),
208 OpenAIModel::GPT5Mini => write!(f, "gpt-5-mini-2025-08-07"),
209 OpenAIModel::GPT5 => write!(f, "gpt-5-2025-08-07"),
210 OpenAIModel::GPT51 => write!(f, "gpt-5.1-2025-11-13"),
211 OpenAIModel::Custom(model_name) => write!(f, "{}", model_name),
212 }
213 }
214}
215
216#[derive(Debug, Serialize, Deserialize, Clone, PartialEq, Default)]
222#[serde(rename_all = "lowercase")]
223pub enum Role {
224 System,
225 Developer,
226 User,
227 #[default]
228 Assistant,
229 Tool,
230}
231
232impl std::fmt::Display for Role {
233 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
234 match self {
235 Role::System => write!(f, "system"),
236 Role::Developer => write!(f, "developer"),
237 Role::User => write!(f, "user"),
238 Role::Assistant => write!(f, "assistant"),
239 Role::Tool => write!(f, "tool"),
240 }
241 }
242}
243
244#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
246pub struct ModelInfo {
247 pub provider: String,
249 pub id: String,
251}
252
253#[derive(Debug, Serialize, Deserialize, Clone, PartialEq, Default)]
255pub struct ChatMessage {
256 pub role: Role,
257 pub content: Option<MessageContent>,
258 #[serde(skip_serializing_if = "Option::is_none")]
259 pub name: Option<String>,
260 #[serde(skip_serializing_if = "Option::is_none")]
261 pub tool_calls: Option<Vec<ToolCall>>,
262 #[serde(skip_serializing_if = "Option::is_none")]
263 pub tool_call_id: Option<String>,
264 #[serde(skip_serializing_if = "Option::is_none")]
265 pub usage: Option<LLMTokenUsage>,
266
267 #[serde(skip_serializing_if = "Option::is_none")]
270 pub id: Option<String>,
271 #[serde(skip_serializing_if = "Option::is_none")]
273 pub model: Option<ModelInfo>,
274 #[serde(skip_serializing_if = "Option::is_none")]
276 pub cost: Option<f64>,
277 #[serde(skip_serializing_if = "Option::is_none")]
279 pub finish_reason: Option<String>,
280 #[serde(skip_serializing_if = "Option::is_none")]
282 pub created_at: Option<i64>,
283 #[serde(skip_serializing_if = "Option::is_none")]
285 pub completed_at: Option<i64>,
286 #[serde(skip_serializing_if = "Option::is_none")]
288 pub metadata: Option<serde_json::Value>,
289}
290
291impl ChatMessage {
292 pub fn last_server_message(messages: &[ChatMessage]) -> Option<&ChatMessage> {
293 messages
294 .iter()
295 .rev()
296 .find(|message| message.role != Role::User && message.role != Role::Tool)
297 }
298
299 pub fn to_xml(&self) -> String {
300 match &self.content {
301 Some(MessageContent::String(s)) => {
302 format!("<message role=\"{}\">{}</message>", self.role, s)
303 }
304 Some(MessageContent::Array(parts)) => parts
305 .iter()
306 .map(|part| {
307 format!(
308 "<message role=\"{}\" type=\"{}\">{}</message>",
309 self.role,
310 part.r#type,
311 part.text.clone().unwrap_or_default()
312 )
313 })
314 .collect::<Vec<String>>()
315 .join("\n"),
316 None => String::new(),
317 }
318 }
319}
320
321#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
323#[serde(untagged)]
324pub enum MessageContent {
325 String(String),
326 Array(Vec<ContentPart>),
327}
328
329impl MessageContent {
330 pub fn inject_checkpoint_id(&self, checkpoint_id: Uuid) -> Self {
331 match self {
332 MessageContent::String(s) => MessageContent::String(format!(
333 "<checkpoint_id>{checkpoint_id}</checkpoint_id>\n{s}"
334 )),
335 MessageContent::Array(parts) => MessageContent::Array(
336 std::iter::once(ContentPart {
337 r#type: "text".to_string(),
338 text: Some(format!("<checkpoint_id>{checkpoint_id}</checkpoint_id>")),
339 image_url: None,
340 })
341 .chain(parts.iter().cloned())
342 .collect(),
343 ),
344 }
345 }
346
347 pub fn extract_checkpoint_id(&self) -> Option<Uuid> {
348 match self {
349 MessageContent::String(s) => s
350 .rfind("<checkpoint_id>")
351 .and_then(|start| {
352 s[start..]
353 .find("</checkpoint_id>")
354 .map(|end| (start + "<checkpoint_id>".len(), start + end))
355 })
356 .and_then(|(start, end)| Uuid::parse_str(&s[start..end]).ok()),
357 MessageContent::Array(parts) => parts.iter().rev().find_map(|part| {
358 part.text.as_deref().and_then(|text| {
359 text.rfind("<checkpoint_id>")
360 .and_then(|start| {
361 text[start..]
362 .find("</checkpoint_id>")
363 .map(|end| (start + "<checkpoint_id>".len(), start + end))
364 })
365 .and_then(|(start, end)| Uuid::parse_str(&text[start..end]).ok())
366 })
367 }),
368 }
369 }
370}
371
372impl std::fmt::Display for MessageContent {
373 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
374 match self {
375 MessageContent::String(s) => write!(f, "{s}"),
376 MessageContent::Array(parts) => {
377 let text_parts: Vec<String> =
378 parts.iter().filter_map(|part| part.text.clone()).collect();
379 write!(f, "{}", text_parts.join("\n"))
380 }
381 }
382 }
383}
384
385impl Default for MessageContent {
386 fn default() -> Self {
387 MessageContent::String(String::new())
388 }
389}
390
391#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
393pub struct ContentPart {
394 pub r#type: String,
395 #[serde(skip_serializing_if = "Option::is_none")]
396 pub text: Option<String>,
397 #[serde(skip_serializing_if = "Option::is_none")]
398 pub image_url: Option<ImageUrl>,
399}
400
401#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
403pub struct ImageUrl {
404 pub url: String,
405 #[serde(skip_serializing_if = "Option::is_none")]
406 pub detail: Option<String>,
407}
408
409#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
415pub struct Tool {
416 pub r#type: String,
417 pub function: FunctionDefinition,
418}
419
420#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
422pub struct FunctionDefinition {
423 pub name: String,
424 pub description: Option<String>,
425 pub parameters: serde_json::Value,
426}
427
428impl From<Tool> for LLMTool {
429 fn from(tool: Tool) -> Self {
430 LLMTool {
431 name: tool.function.name,
432 description: tool.function.description.unwrap_or_default(),
433 input_schema: tool.function.parameters,
434 }
435 }
436}
437
438#[derive(Debug, Clone, PartialEq)]
440pub enum ToolChoice {
441 Auto,
442 Required,
443 Object(ToolChoiceObject),
444}
445
446impl Serialize for ToolChoice {
447 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
448 where
449 S: serde::Serializer,
450 {
451 match self {
452 ToolChoice::Auto => serializer.serialize_str("auto"),
453 ToolChoice::Required => serializer.serialize_str("required"),
454 ToolChoice::Object(obj) => obj.serialize(serializer),
455 }
456 }
457}
458
459impl<'de> Deserialize<'de> for ToolChoice {
460 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
461 where
462 D: serde::Deserializer<'de>,
463 {
464 struct ToolChoiceVisitor;
465
466 impl<'de> serde::de::Visitor<'de> for ToolChoiceVisitor {
467 type Value = ToolChoice;
468
469 fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
470 formatter.write_str("string or object")
471 }
472
473 fn visit_str<E>(self, value: &str) -> Result<ToolChoice, E>
474 where
475 E: serde::de::Error,
476 {
477 match value {
478 "auto" => Ok(ToolChoice::Auto),
479 "required" => Ok(ToolChoice::Required),
480 _ => Err(serde::de::Error::unknown_variant(
481 value,
482 &["auto", "required"],
483 )),
484 }
485 }
486
487 fn visit_map<M>(self, map: M) -> Result<ToolChoice, M::Error>
488 where
489 M: serde::de::MapAccess<'de>,
490 {
491 let obj = ToolChoiceObject::deserialize(
492 serde::de::value::MapAccessDeserializer::new(map),
493 )?;
494 Ok(ToolChoice::Object(obj))
495 }
496 }
497
498 deserializer.deserialize_any(ToolChoiceVisitor)
499 }
500}
501
502#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
503pub struct ToolChoiceObject {
504 pub r#type: String,
505 pub function: FunctionChoice,
506}
507
508#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
509pub struct FunctionChoice {
510 pub name: String,
511}
512
513#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
515pub struct ToolCall {
516 pub id: String,
517 pub r#type: String,
518 pub function: FunctionCall,
519 #[serde(skip_serializing_if = "Option::is_none")]
521 pub metadata: Option<serde_json::Value>,
522}
523
524#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
526pub struct FunctionCall {
527 pub name: String,
528 pub arguments: String,
529}
530
531#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
533pub enum ToolCallResultStatus {
534 Success,
535 Error,
536 Cancelled,
537}
538
539#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
541pub struct ToolCallResult {
542 pub call: ToolCall,
543 pub result: String,
544 pub status: ToolCallResultStatus,
545}
546
547#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
549pub struct ToolCallResultProgress {
550 pub id: Uuid,
551 pub message: String,
552}
553
554#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
560pub struct ChatCompletionRequest {
561 pub model: String,
562 pub messages: Vec<ChatMessage>,
563 #[serde(skip_serializing_if = "Option::is_none")]
564 pub frequency_penalty: Option<f32>,
565 #[serde(skip_serializing_if = "Option::is_none")]
566 pub logit_bias: Option<serde_json::Value>,
567 #[serde(skip_serializing_if = "Option::is_none")]
568 pub logprobs: Option<bool>,
569 #[serde(skip_serializing_if = "Option::is_none")]
570 pub max_tokens: Option<u32>,
571 #[serde(skip_serializing_if = "Option::is_none")]
572 pub n: Option<u32>,
573 #[serde(skip_serializing_if = "Option::is_none")]
574 pub presence_penalty: Option<f32>,
575 #[serde(skip_serializing_if = "Option::is_none")]
576 pub response_format: Option<ResponseFormat>,
577 #[serde(skip_serializing_if = "Option::is_none")]
578 pub seed: Option<i64>,
579 #[serde(skip_serializing_if = "Option::is_none")]
580 pub stop: Option<StopSequence>,
581 #[serde(skip_serializing_if = "Option::is_none")]
582 pub stream: Option<bool>,
583 #[serde(skip_serializing_if = "Option::is_none")]
584 pub temperature: Option<f32>,
585 #[serde(skip_serializing_if = "Option::is_none")]
586 pub top_p: Option<f32>,
587 #[serde(skip_serializing_if = "Option::is_none")]
588 pub tools: Option<Vec<Tool>>,
589 #[serde(skip_serializing_if = "Option::is_none")]
590 pub tool_choice: Option<ToolChoice>,
591 #[serde(skip_serializing_if = "Option::is_none")]
592 pub user: Option<String>,
593 #[serde(skip_serializing_if = "Option::is_none")]
594 pub context: Option<ChatCompletionContext>,
595}
596
597impl ChatCompletionRequest {
598 pub fn new(
599 model: String,
600 messages: Vec<ChatMessage>,
601 tools: Option<Vec<Tool>>,
602 stream: Option<bool>,
603 ) -> Self {
604 Self {
605 model,
606 messages,
607 frequency_penalty: None,
608 logit_bias: None,
609 logprobs: None,
610 max_tokens: None,
611 n: None,
612 presence_penalty: None,
613 response_format: None,
614 seed: None,
615 stop: None,
616 stream,
617 temperature: None,
618 top_p: None,
619 tools,
620 tool_choice: None,
621 user: None,
622 context: None,
623 }
624 }
625}
626
627#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
628pub struct ChatCompletionContext {
629 pub scratchpad: Option<Value>,
630}
631
632#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
633pub struct ResponseFormat {
634 pub r#type: String,
635}
636
637#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
638#[serde(untagged)]
639pub enum StopSequence {
640 String(String),
641 Array(Vec<String>),
642}
643
644#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
646pub struct ChatCompletionResponse {
647 pub id: String,
648 pub object: String,
649 pub created: u64,
650 pub model: String,
651 pub choices: Vec<ChatCompletionChoice>,
652 pub usage: LLMTokenUsage,
653 #[serde(skip_serializing_if = "Option::is_none")]
654 pub system_fingerprint: Option<String>,
655 pub metadata: Option<serde_json::Value>,
656}
657
658#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
659pub struct ChatCompletionChoice {
660 pub index: usize,
661 pub message: ChatMessage,
662 pub logprobs: Option<LogProbs>,
663 pub finish_reason: FinishReason,
664}
665
666#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
667#[serde(rename_all = "snake_case")]
668pub enum FinishReason {
669 Stop,
670 Length,
671 ContentFilter,
672 ToolCalls,
673}
674
675#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
676pub struct LogProbs {
677 pub content: Option<Vec<LogProbContent>>,
678}
679
680#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
681pub struct LogProbContent {
682 pub token: String,
683 pub logprob: f32,
684 pub bytes: Option<Vec<u8>>,
685 pub top_logprobs: Option<Vec<TokenLogprob>>,
686}
687
688#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
689pub struct TokenLogprob {
690 pub token: String,
691 pub logprob: f32,
692 pub bytes: Option<Vec<u8>>,
693}
694
695#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
700pub struct ChatCompletionStreamResponse {
701 pub id: String,
702 pub object: String,
703 pub created: u64,
704 pub model: String,
705 pub choices: Vec<ChatCompletionStreamChoice>,
706 pub usage: Option<LLMTokenUsage>,
707 pub metadata: Option<serde_json::Value>,
708}
709
710#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
711pub struct ChatCompletionStreamChoice {
712 pub index: usize,
713 pub delta: ChatMessageDelta,
714 pub finish_reason: Option<FinishReason>,
715}
716
717#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
718pub struct ChatMessageDelta {
719 #[serde(skip_serializing_if = "Option::is_none")]
720 pub role: Option<Role>,
721 #[serde(skip_serializing_if = "Option::is_none")]
722 pub content: Option<String>,
723 #[serde(skip_serializing_if = "Option::is_none")]
724 pub tool_calls: Option<Vec<ToolCallDelta>>,
725}
726
727#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
728pub struct ToolCallDelta {
729 pub index: usize,
730 pub id: Option<String>,
731 pub r#type: Option<String>,
732 pub function: Option<FunctionCallDelta>,
733 #[serde(skip_serializing_if = "Option::is_none")]
735 pub metadata: Option<serde_json::Value>,
736}
737
738#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
739pub struct FunctionCallDelta {
740 pub name: Option<String>,
741 pub arguments: Option<String>,
742}
743
744impl From<LLMMessage> for ChatMessage {
749 fn from(llm_message: LLMMessage) -> Self {
750 let role = match llm_message.role.as_str() {
751 "system" => Role::System,
752 "user" => Role::User,
753 "assistant" => Role::Assistant,
754 "tool" => Role::Tool,
755 "developer" => Role::Developer,
756 _ => Role::User,
757 };
758
759 let (content, tool_calls) = match llm_message.content {
760 LLMMessageContent::String(text) => (Some(MessageContent::String(text)), None),
761 LLMMessageContent::List(items) => {
762 let mut text_parts = Vec::new();
763 let mut tool_call_parts = Vec::new();
764
765 for item in items {
766 match item {
767 LLMMessageTypedContent::Text { text } => {
768 text_parts.push(ContentPart {
769 r#type: "text".to_string(),
770 text: Some(text),
771 image_url: None,
772 });
773 }
774 LLMMessageTypedContent::ToolCall {
775 id,
776 name,
777 args,
778 metadata,
779 } => {
780 tool_call_parts.push(ToolCall {
781 id,
782 r#type: "function".to_string(),
783 function: FunctionCall {
784 name,
785 arguments: args.to_string(),
786 },
787 metadata,
788 });
789 }
790 LLMMessageTypedContent::ToolResult { content, .. } => {
791 text_parts.push(ContentPart {
792 r#type: "text".to_string(),
793 text: Some(content),
794 image_url: None,
795 });
796 }
797 LLMMessageTypedContent::Image { source } => {
798 text_parts.push(ContentPart {
799 r#type: "image_url".to_string(),
800 text: None,
801 image_url: Some(ImageUrl {
802 url: format!(
803 "data:{};base64,{}",
804 source.media_type, source.data
805 ),
806 detail: None,
807 }),
808 });
809 }
810 }
811 }
812
813 let content = if !text_parts.is_empty() {
814 Some(MessageContent::Array(text_parts))
815 } else {
816 None
817 };
818
819 let tool_calls = if !tool_call_parts.is_empty() {
820 Some(tool_call_parts)
821 } else {
822 None
823 };
824
825 (content, tool_calls)
826 }
827 };
828
829 ChatMessage {
830 role,
831 content,
832 name: None,
833 tool_calls,
834 tool_call_id: None,
835 usage: None,
836 ..Default::default()
837 }
838 }
839}
840
841impl From<ChatMessage> for LLMMessage {
842 fn from(chat_message: ChatMessage) -> Self {
843 let mut content_parts = Vec::new();
844
845 match chat_message.content {
846 Some(MessageContent::String(s)) => {
847 if !s.is_empty() {
848 content_parts.push(LLMMessageTypedContent::Text { text: s });
849 }
850 }
851 Some(MessageContent::Array(parts)) => {
852 for part in parts {
853 if let Some(text) = part.text {
854 content_parts.push(LLMMessageTypedContent::Text { text });
855 } else if let Some(image_url) = part.image_url {
856 let (media_type, data) = if image_url.url.starts_with("data:") {
857 let parts: Vec<&str> = image_url.url.splitn(2, ',').collect();
858 if parts.len() == 2 {
859 let meta = parts[0];
860 let data = parts[1];
861 let media_type = meta
862 .trim_start_matches("data:")
863 .trim_end_matches(";base64")
864 .to_string();
865 (media_type, data.to_string())
866 } else {
867 ("image/jpeg".to_string(), image_url.url)
868 }
869 } else {
870 ("image/jpeg".to_string(), image_url.url)
871 };
872
873 content_parts.push(LLMMessageTypedContent::Image {
874 source: LLMMessageImageSource {
875 r#type: "base64".to_string(),
876 media_type,
877 data,
878 },
879 });
880 }
881 }
882 }
883 None => {}
884 }
885
886 if let Some(tool_calls) = chat_message.tool_calls {
887 for tool_call in tool_calls {
888 let args = serde_json::from_str(&tool_call.function.arguments).unwrap_or(json!({}));
889 content_parts.push(LLMMessageTypedContent::ToolCall {
890 id: tool_call.id,
891 name: tool_call.function.name,
892 args,
893 metadata: tool_call.metadata,
894 });
895 }
896 }
897
898 if chat_message.role == Role::Tool
903 && let Some(tool_call_id) = chat_message.tool_call_id
904 {
905 let content_str = content_parts
907 .iter()
908 .filter_map(|p| match p {
909 LLMMessageTypedContent::Text { text } => Some(text.clone()),
910 _ => None,
911 })
912 .collect::<Vec<_>>()
913 .join("\n");
914
915 content_parts = vec![LLMMessageTypedContent::ToolResult {
917 tool_use_id: tool_call_id,
918 content: content_str,
919 }];
920 }
921
922 LLMMessage {
923 role: chat_message.role.to_string(),
924 content: if content_parts.is_empty() {
925 LLMMessageContent::String(String::new())
926 } else if content_parts.len() == 1 {
927 match &content_parts[0] {
928 LLMMessageTypedContent::Text { text } => {
929 LLMMessageContent::String(text.clone())
930 }
931 _ => LLMMessageContent::List(content_parts),
932 }
933 } else {
934 LLMMessageContent::List(content_parts)
935 },
936 }
937 }
938}
939
940impl From<GenerationDelta> for ChatMessageDelta {
941 fn from(delta: GenerationDelta) -> Self {
942 match delta {
943 GenerationDelta::Content { content } => ChatMessageDelta {
944 role: Some(Role::Assistant),
945 content: Some(content),
946 tool_calls: None,
947 },
948 GenerationDelta::Thinking { thinking: _ } => ChatMessageDelta {
949 role: Some(Role::Assistant),
950 content: None,
951 tool_calls: None,
952 },
953 GenerationDelta::ToolUse { tool_use } => ChatMessageDelta {
954 role: Some(Role::Assistant),
955 content: None,
956 tool_calls: Some(vec![ToolCallDelta {
957 index: tool_use.index,
958 id: tool_use.id,
959 r#type: Some("function".to_string()),
960 function: Some(FunctionCallDelta {
961 name: tool_use.name,
962 arguments: tool_use.input,
963 }),
964 metadata: tool_use.metadata,
965 }]),
966 },
967 _ => ChatMessageDelta {
968 role: Some(Role::Assistant),
969 content: None,
970 tool_calls: None,
971 },
972 }
973 }
974}
975
976#[cfg(test)]
977mod tests {
978 use super::*;
979
980 #[test]
981 fn test_serialize_basic_request() {
982 let request = ChatCompletionRequest {
983 model: "gpt-4".to_string(),
984 messages: vec![
985 ChatMessage {
986 role: Role::System,
987 content: Some(MessageContent::String(
988 "You are a helpful assistant.".to_string(),
989 )),
990 name: None,
991 tool_calls: None,
992 tool_call_id: None,
993 usage: None,
994 ..Default::default()
995 },
996 ChatMessage {
997 role: Role::User,
998 content: Some(MessageContent::String("Hello!".to_string())),
999 name: None,
1000 tool_calls: None,
1001 tool_call_id: None,
1002 usage: None,
1003 ..Default::default()
1004 },
1005 ],
1006 frequency_penalty: None,
1007 logit_bias: None,
1008 logprobs: None,
1009 max_tokens: Some(100),
1010 n: None,
1011 presence_penalty: None,
1012 response_format: None,
1013 seed: None,
1014 stop: None,
1015 stream: None,
1016 temperature: Some(0.7),
1017 top_p: None,
1018 tools: None,
1019 tool_choice: None,
1020 user: None,
1021 context: None,
1022 };
1023
1024 let json = serde_json::to_string(&request).unwrap();
1025 assert!(json.contains("\"model\":\"gpt-4\""));
1026 assert!(json.contains("\"messages\":["));
1027 assert!(json.contains("\"role\":\"system\""));
1028 }
1029
1030 #[test]
1031 fn test_llm_message_to_chat_message() {
1032 let llm_message = LLMMessage {
1033 role: "user".to_string(),
1034 content: LLMMessageContent::String("Hello, world!".to_string()),
1035 };
1036
1037 let chat_message = ChatMessage::from(llm_message);
1038 assert_eq!(chat_message.role, Role::User);
1039 match &chat_message.content {
1040 Some(MessageContent::String(text)) => assert_eq!(text, "Hello, world!"),
1041 _ => panic!("Expected string content"),
1042 }
1043 }
1044
1045 #[test]
1046 fn test_chat_message_to_llm_message_tool_result() {
1047 let chat_message = ChatMessage {
1051 role: Role::Tool,
1052 content: Some(MessageContent::String("Tool execution result".to_string())),
1053 name: None,
1054 tool_calls: None,
1055 tool_call_id: Some("toolu_01Abc123".to_string()),
1056 usage: None,
1057 ..Default::default()
1058 };
1059
1060 let llm_message: LLMMessage = chat_message.into();
1061
1062 assert_eq!(llm_message.role, "tool");
1064
1065 match &llm_message.content {
1067 LLMMessageContent::List(parts) => {
1068 assert_eq!(parts.len(), 1, "Should have exactly one content part");
1069 match &parts[0] {
1070 LLMMessageTypedContent::ToolResult {
1071 tool_use_id,
1072 content,
1073 } => {
1074 assert_eq!(tool_use_id, "toolu_01Abc123");
1075 assert_eq!(content, "Tool execution result");
1076 }
1077 _ => panic!("Expected ToolResult content part, got {:?}", parts[0]),
1078 }
1079 }
1080 _ => panic!(
1081 "Expected List content with ToolResult, got {:?}",
1082 llm_message.content
1083 ),
1084 }
1085 }
1086
1087 #[test]
1088 fn test_chat_message_to_llm_message_tool_result_empty_content() {
1089 let chat_message = ChatMessage {
1091 role: Role::Tool,
1092 content: None,
1093 name: None,
1094 tool_calls: None,
1095 tool_call_id: Some("toolu_02Xyz789".to_string()),
1096 usage: None,
1097 ..Default::default()
1098 };
1099
1100 let llm_message: LLMMessage = chat_message.into();
1101
1102 assert_eq!(llm_message.role, "tool");
1103 match &llm_message.content {
1104 LLMMessageContent::List(parts) => {
1105 assert_eq!(parts.len(), 1);
1106 match &parts[0] {
1107 LLMMessageTypedContent::ToolResult {
1108 tool_use_id,
1109 content,
1110 } => {
1111 assert_eq!(tool_use_id, "toolu_02Xyz789");
1112 assert_eq!(content, ""); }
1114 _ => panic!("Expected ToolResult content part"),
1115 }
1116 }
1117 _ => panic!("Expected List content with ToolResult"),
1118 }
1119 }
1120
1121 #[test]
1122 fn test_chat_message_to_llm_message_assistant_with_tool_calls() {
1123 let chat_message = ChatMessage {
1125 role: Role::Assistant,
1126 content: Some(MessageContent::String(
1127 "I'll help you with that.".to_string(),
1128 )),
1129 name: None,
1130 tool_calls: Some(vec![ToolCall {
1131 id: "call_abc123".to_string(),
1132 r#type: "function".to_string(),
1133 function: FunctionCall {
1134 name: "get_weather".to_string(),
1135 arguments: r#"{"location": "Paris"}"#.to_string(),
1136 },
1137 metadata: None,
1138 }]),
1139 tool_call_id: None,
1140 usage: None,
1141 ..Default::default()
1142 };
1143
1144 let llm_message: LLMMessage = chat_message.into();
1145
1146 assert_eq!(llm_message.role, "assistant");
1147 match &llm_message.content {
1148 LLMMessageContent::List(parts) => {
1149 assert_eq!(parts.len(), 2, "Should have text and tool call");
1150
1151 match &parts[0] {
1153 LLMMessageTypedContent::Text { text } => {
1154 assert_eq!(text, "I'll help you with that.");
1155 }
1156 _ => panic!("Expected Text content part first"),
1157 }
1158
1159 match &parts[1] {
1161 LLMMessageTypedContent::ToolCall { id, name, args, .. } => {
1162 assert_eq!(id, "call_abc123");
1163 assert_eq!(name, "get_weather");
1164 assert_eq!(args["location"], "Paris");
1165 }
1166 _ => panic!("Expected ToolCall content part second"),
1167 }
1168 }
1169 _ => panic!("Expected List content"),
1170 }
1171 }
1172}