1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
use std::str::FromStr;

use crate::clarity::codec::*;
use crate::clarity::stacks_common::codec::StacksMessageCodec;
use crate::clarity::stacks_common::types::chainstate::StacksAddress;
use crate::clarity::vm::types::{PrincipalData, QualifiedContractIdentifier, Value};
use crate::clarity::vm::{ClarityName, ClarityVersion, ContractName};
use clarity_repl::clarity::address::{
    AddressHashMode, C32_ADDRESS_VERSION_MAINNET_SINGLESIG, C32_ADDRESS_VERSION_TESTNET_SINGLESIG,
};
use clarity_repl::clarity::util::secp256k1::{
    MessageSignature, Secp256k1PrivateKey, Secp256k1PublicKey,
};
use hmac::Hmac;
use libsecp256k1::{PublicKey, SecretKey};
use pbkdf2::pbkdf2;
use sha2::Sha512;
use tiny_hderive::bip32::ExtendedPrivKey;

#[derive(Clone, Debug)]
pub struct Wallet {
    pub mnemonic: String,
    pub derivation: String,
    pub mainnet: bool,
}

impl Wallet {
    pub fn compute_stacks_address(&self) -> StacksAddress {
        let keypair = compute_keypair(self);
        compute_stacks_address(&keypair.public_key, self.mainnet)
    }
}

pub struct Keypair {
    pub secret_key: Secp256k1PrivateKey,
    pub public_key: PublicKey,
}

pub fn compute_stacks_address(public_key: &PublicKey, mainnet: bool) -> StacksAddress {
    let wrapped_public_key =
        Secp256k1PublicKey::from_slice(&public_key.serialize_compressed()).unwrap();

    StacksAddress::from_public_keys(
        match mainnet {
            true => C32_ADDRESS_VERSION_MAINNET_SINGLESIG,
            false => C32_ADDRESS_VERSION_TESTNET_SINGLESIG,
        },
        &AddressHashMode::SerializeP2PKH,
        1,
        &vec![wrapped_public_key],
    )
    .unwrap()
}

pub fn compute_keypair(wallet: &Wallet) -> Keypair {
    let bip39_seed = match get_bip39_seed_from_mnemonic(&wallet.mnemonic, "") {
        Ok(bip39_seed) => bip39_seed,
        Err(_) => panic!(),
    };
    let ext = ExtendedPrivKey::derive(&bip39_seed[..], wallet.derivation.as_str()).unwrap();
    let wrapped_secret_key = Secp256k1PrivateKey::from_slice(&ext.secret()).unwrap();
    let secret_key = SecretKey::parse_slice(&ext.secret()).unwrap();
    let public_key = PublicKey::from_secret_key(&secret_key);
    Keypair {
        secret_key: wrapped_secret_key,
        public_key,
    }
}

pub fn sign_transaction_payload(
    wallet: &Wallet,
    payload: TransactionPayload,
    nonce: u64,
    tx_fee: u64,
    anchor_mode: TransactionAnchorMode,
) -> Result<StacksTransaction, String> {
    let keypair = compute_keypair(wallet);
    let signer_addr = compute_stacks_address(&keypair.public_key, wallet.mainnet);

    let spending_condition = TransactionSpendingCondition::Singlesig(SinglesigSpendingCondition {
        signer: signer_addr.bytes,
        nonce,
        tx_fee,
        hash_mode: SinglesigHashMode::P2PKH,
        key_encoding: TransactionPublicKeyEncoding::Compressed,
        signature: MessageSignature::empty(),
    });

    let auth = TransactionAuth::Standard(spending_condition);
    let unsigned_tx = StacksTransaction {
        version: match wallet.mainnet {
            true => TransactionVersion::Mainnet,
            false => TransactionVersion::Testnet,
        },
        chain_id: match wallet.mainnet {
            true => 0x00000001,
            false => 0x80000000,
        },
        auth,
        anchor_mode,
        post_condition_mode: TransactionPostConditionMode::Allow,
        post_conditions: vec![],
        payload,
    };

    let mut unsigned_tx_bytes = vec![];
    unsigned_tx
        .consensus_serialize(&mut unsigned_tx_bytes)
        .expect("FATAL: invalid transaction");

    let mut tx_signer = StacksTransactionSigner::new(&unsigned_tx);
    tx_signer.sign_origin(&keypair.secret_key).unwrap();
    let signed_tx = tx_signer.get_tx().unwrap();
    Ok(signed_tx)
}

pub fn encode_contract_call(
    contract_id: &QualifiedContractIdentifier,
    function_name: ClarityName,
    function_args: Vec<Value>,
    wallet: &Wallet,
    nonce: u64,
    tx_fee: u64,
    anchor_mode: TransactionAnchorMode,
) -> Result<StacksTransaction, String> {
    let payload = TransactionContractCall {
        contract_name: contract_id.name.clone(),
        address: StacksAddress::from(contract_id.issuer.clone()),
        function_name: function_name.clone(),
        function_args: function_args.clone(),
    };
    sign_transaction_payload(
        wallet,
        TransactionPayload::ContractCall(payload),
        nonce,
        tx_fee,
        anchor_mode,
    )
}

pub fn encode_stx_transfer(
    recipient: PrincipalData,
    amount: u64,
    memo: [u8; 34],
    wallet: &Wallet,
    nonce: u64,
    tx_fee: u64,
    anchor_mode: TransactionAnchorMode,
) -> Result<StacksTransaction, String> {
    let payload = TransactionPayload::TokenTransfer(recipient, amount, TokenTransferMemo(memo));
    sign_transaction_payload(wallet, payload, nonce, tx_fee, anchor_mode)
}

pub fn encode_contract_publish(
    contract_name: &ContractName,
    source: &str,
    clarity_version: Option<ClarityVersion>,
    wallet: &Wallet,
    nonce: u64,
    tx_fee: u64,
    anchor_mode: TransactionAnchorMode,
) -> Result<StacksTransaction, String> {
    let payload = TransactionSmartContract {
        name: contract_name.clone(),
        code_body: StacksString::from_str(source).unwrap(),
    };
    sign_transaction_payload(
        wallet,
        TransactionPayload::SmartContract(payload, clarity_version),
        nonce,
        tx_fee,
        anchor_mode,
    )
}

pub fn get_bip39_seed_from_mnemonic(mnemonic: &str, password: &str) -> Result<Vec<u8>, String> {
    const PBKDF2_ROUNDS: u32 = 2048;
    const PBKDF2_BYTES: usize = 64;
    let salt = format!("mnemonic{}", password);
    let mut seed = vec![0u8; PBKDF2_BYTES];

    pbkdf2::<Hmac<Sha512>>(
        mnemonic.as_bytes(),
        salt.as_bytes(),
        PBKDF2_ROUNDS,
        &mut seed,
    )
    .map_err(|e| e.to_string())?;
    Ok(seed)
}