1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
//! Module containing the definitions for memory regions
use arrayvec::ArrayVec;
use serde::{Deserialize, Serialize};
/// The identifier that is being used in the byte iterator to be able to differentiate between memory regions and register data
pub const MEMORY_REGION_IDENTIFIER: u8 = 0x01;
/// A collection of bytes that capture a memory region
#[cfg(feature = "std")]
pub trait MemoryRegion {
/// Returns the slice of memory that can be found at the given address_range.
/// If the given address range is not fully within the captured region, then None is returned.
fn read(
&self,
address_range: core::ops::Range<u64>,
) -> Result<Option<Vec<u8>>, crate::device_memory::MemoryReadError>;
/// Reads a byte from the given address if it is present in the region
fn read_u8(&self, address: u64) -> Result<Option<u8>, crate::device_memory::MemoryReadError> {
Ok(self.read(address..address + 1)?.map(|b| b[0]))
}
/// Reads a u32 from the given address if it is present in the region
fn read_u32(
&self,
address: u64,
endianness: gimli::RunTimeEndian,
) -> Result<Option<u32>, crate::device_memory::MemoryReadError> {
if let Some(slice) = self
.read(address..address + 4)?
.map(|slice| slice[..].try_into().unwrap())
{
if gimli::Endianity::is_little_endian(endianness) {
Ok(Some(u32::from_le_bytes(slice)))
} else {
Ok(Some(u32::from_be_bytes(slice)))
}
} else {
Ok(None)
}
}
}
/// A memory region that is backed by a stack allocated array
#[derive(Clone, Debug, Deserialize, Serialize, Default, PartialEq, Eq)]
pub struct ArrayMemoryRegion<const SIZE: usize> {
start_address: u64,
data: ArrayVec<u8, SIZE>,
}
impl<const SIZE: usize> ArrayMemoryRegion<SIZE> {
/// Creates a new memory region starting at the given address with the given data
pub fn new(start_address: u64, data: ArrayVec<u8, SIZE>) -> Self {
Self {
start_address,
data,
}
}
/// Get a byte iterator for this region.
///
/// This iterator can be used to store the region as bytes or to stream over a network.
/// The iterated bytes include the length so that if you use the FromIterator implementation,
/// it consumes only the bytes that are part of the collection.
/// This means you can chain multiple of these iterators after each other.
///
/// ```
/// use arrayvec::ArrayVec;
/// use stackdump_core::memory_region::{ArrayMemoryRegion, MemoryRegion};
///
/// let region1 = ArrayMemoryRegion::<4>::new(0, ArrayVec::from([1, 2, 3, 4]));
/// let region2 = ArrayMemoryRegion::<4>::new(100, ArrayVec::from([5, 6, 7, 8]));
///
/// let mut intermediate_buffer = Vec::new();
///
/// intermediate_buffer.extend(region1.bytes());
/// intermediate_buffer.extend(region2.bytes());
///
/// let mut intermediate_iter = intermediate_buffer.iter();
///
/// assert_eq!(region1, ArrayMemoryRegion::<4>::from_iter(&mut intermediate_iter));
/// assert_eq!(region2, ArrayMemoryRegion::<4>::from_iter(&mut intermediate_iter));
/// ```
pub fn bytes(&self) -> MemoryRegionIterator {
MemoryRegionIterator::new(self.start_address, &self.data)
}
/// Clears the existing memory data and copies the new data from the given pointer
///
/// If the data_len is greater than the capacity of this memory region, then this function will panic.
///
/// ## Safety
///
/// The entire block of memory from `data_ptr .. data_ptr + data_len` must be readable.
/// (A memcpy must be possible with the pointer as source)
pub unsafe fn copy_from_memory(&mut self, data_ptr: *const u8, data_len: usize) {
self.start_address = data_ptr as u64;
self.data.clear();
assert!(data_len <= self.data.capacity());
self.data.set_len(data_len);
self.data.as_mut_ptr().copy_from(data_ptr, data_len);
}
}
#[cfg(feature = "std")]
impl<const SIZE: usize> MemoryRegion for ArrayMemoryRegion<SIZE> {
fn read(
&self,
index: core::ops::Range<u64>,
) -> Result<Option<Vec<u8>>, crate::device_memory::MemoryReadError> {
let start = match index.start.checked_sub(self.start_address) {
Some(start) => start,
None => return Ok(None),
};
let end = match index.end.checked_sub(self.start_address) {
Some(end) => end,
None => return Ok(None),
};
Ok(self
.data
.get(start as usize..end as usize)
.map(|slice| slice.to_vec()))
}
}
impl<'a, const SIZE: usize> FromIterator<&'a u8> for ArrayMemoryRegion<SIZE> {
fn from_iter<T: IntoIterator<Item = &'a u8>>(iter: T) -> Self {
Self::from_iter(iter.into_iter().copied())
}
}
impl<const SIZE: usize> FromIterator<u8> for ArrayMemoryRegion<SIZE> {
fn from_iter<T: IntoIterator<Item = u8>>(iter: T) -> Self {
let mut iter = iter.into_iter();
assert_eq!(
iter.next().unwrap(),
MEMORY_REGION_IDENTIFIER,
"The given iterator is not for a memory region"
);
let start_address = u64::from_le_bytes([
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
]);
let length = u64::from_le_bytes([
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
]);
let data = ArrayVec::from_iter(iter.take(length as usize));
Self {
start_address,
data,
}
}
}
/// A memory region that is backed by a stack allocated array
#[cfg(feature = "std")]
#[derive(Clone, Debug, Deserialize, Serialize, Default, PartialEq, Eq)]
pub struct VecMemoryRegion {
start_address: u64,
data: Vec<u8>,
}
#[cfg(feature = "std")]
impl VecMemoryRegion {
/// Creates a new memory region starting at the given address with the given data
pub fn new(start_address: u64, data: Vec<u8>) -> Self {
Self {
start_address,
data,
}
}
/// Get a byte iterator for this region.
///
/// This iterator can be used to store the region as bytes or to stream over a network.
/// The iterated bytes include the length so that if you use the FromIterator implementation,
/// it consumes only the bytes that are part of the collection.
/// This means you can chain multiple of these iterators after each other.
///
/// ```
/// use arrayvec::ArrayVec;
/// use stackdump_core::memory_region::{ArrayMemoryRegion, MemoryRegion};
///
/// let region1 = ArrayMemoryRegion::<4>::new(0, ArrayVec::from([1, 2, 3, 4]));
/// let region2 = ArrayMemoryRegion::<4>::new(100, ArrayVec::from([5, 6, 7, 8]));
///
/// let mut intermediate_buffer = Vec::new();
///
/// intermediate_buffer.extend(region1.bytes());
/// intermediate_buffer.extend(region2.bytes());
///
/// let mut intermediate_iter = intermediate_buffer.iter();
///
/// assert_eq!(region1, ArrayMemoryRegion::<4>::from_iter(&mut intermediate_iter));
/// assert_eq!(region2, ArrayMemoryRegion::<4>::from_iter(&mut intermediate_iter));
/// ```
pub fn bytes(&self) -> MemoryRegionIterator {
MemoryRegionIterator::new(self.start_address, &self.data)
}
/// Clears the existing memory data and copies the new data from the given pointer
///
/// If the data_len is greater than the capacity of this memory region, then this function will panic.
///
/// ## Safety
///
/// The entire block of memory from `data_ptr .. data_ptr + data_len` must be readable.
/// (A memcpy must be possible with the pointer as source)
pub unsafe fn copy_from_memory(&mut self, data_ptr: *const u8, data_len: usize) {
self.start_address = data_ptr as u64;
self.data.clear();
self.data.resize(data_len, 0);
self.data.as_mut_ptr().copy_from(data_ptr, data_len);
}
}
#[cfg(feature = "std")]
impl MemoryRegion for VecMemoryRegion {
fn read(
&self,
index: core::ops::Range<u64>,
) -> Result<Option<Vec<u8>>, crate::device_memory::MemoryReadError> {
let start = match index.start.checked_sub(self.start_address) {
Some(start) => start,
None => return Ok(None),
};
let end = match index.end.checked_sub(self.start_address) {
Some(end) => end,
None => return Ok(None),
};
Ok(self
.data
.get(start as usize..end as usize)
.map(|slice| slice.to_vec()))
}
}
#[cfg(feature = "std")]
impl<'a> FromIterator<&'a u8> for VecMemoryRegion {
fn from_iter<T: IntoIterator<Item = &'a u8>>(iter: T) -> Self {
Self::from_iter(iter.into_iter().copied())
}
}
#[cfg(feature = "std")]
impl FromIterator<u8> for VecMemoryRegion {
fn from_iter<T: IntoIterator<Item = u8>>(iter: T) -> Self {
let mut iter = iter.into_iter();
assert_eq!(
iter.next().unwrap(),
MEMORY_REGION_IDENTIFIER,
"The given iterator is not for a memory region"
);
let start_address = u64::from_le_bytes([
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
]);
let length = u64::from_le_bytes([
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
iter.next().unwrap(),
]);
let data = Vec::from_iter(iter.take(length as usize));
Self {
start_address,
data,
}
}
}
/// A memory region that is backed by a slice
#[derive(Clone, Debug, Deserialize, Serialize, Default, PartialEq, Eq)]
pub struct SliceMemoryRegion<'a> {
data: &'a [u8],
}
impl<'a> SliceMemoryRegion<'a> {
/// Creates a new memory region starting at the given address with the given data
pub fn new(data: &'a [u8]) -> Self {
Self { data }
}
/// Get a byte iterator for this region.
///
/// This iterator can be used to store the region as bytes or to stream over a network.
/// The iterated bytes include the length so that if you use the FromIterator implementation,
/// it consumes only the bytes that are part of the collection.
/// This means you can chain multiple of these iterators after each other.
///
/// ```
/// use arrayvec::ArrayVec;
/// use stackdump_core::memory_region::{ArrayMemoryRegion, MemoryRegion};
///
/// let region1 = ArrayMemoryRegion::<4>::new(0, ArrayVec::from([1, 2, 3, 4]));
/// let region2 = ArrayMemoryRegion::<4>::new(100, ArrayVec::from([5, 6, 7, 8]));
///
/// let mut intermediate_buffer = Vec::new();
///
/// intermediate_buffer.extend(region1.bytes());
/// intermediate_buffer.extend(region2.bytes());
///
/// let mut intermediate_iter = intermediate_buffer.iter();
///
/// assert_eq!(region1, ArrayMemoryRegion::<4>::from_iter(&mut intermediate_iter));
/// assert_eq!(region2, ArrayMemoryRegion::<4>::from_iter(&mut intermediate_iter));
/// ```
pub fn bytes(&self) -> MemoryRegionIterator {
let start_address = self.data.as_ptr() as u64;
MemoryRegionIterator::new(start_address, self.data)
}
/// This function is especially unsafe.
/// The memory region will reference the given data for its entire lifetime.
///
/// ## Safety
///
/// The entire block of memory from `data_ptr .. data_ptr + data_len` must be readable.
/// (A memcpy must be possible with the pointer as source)
///
/// You must not have another reference to this block of memory or any object that resides in this memory
/// during the entire lifetime of the object
pub unsafe fn copy_from_memory(&mut self, data_ptr: *const u8, data_len: usize) {
self.data = core::slice::from_raw_parts(data_ptr, data_len);
}
}
#[cfg(feature = "std")]
impl<'a> MemoryRegion for SliceMemoryRegion<'a> {
fn read(
&self,
index: core::ops::Range<u64>,
) -> Result<Option<Vec<u8>>, crate::device_memory::MemoryReadError> {
let start_address = self.data.as_ptr() as u64;
let start = match index.start.checked_sub(start_address) {
Some(start) => start,
None => return Ok(None),
};
let end = match index.end.checked_sub(start_address) {
Some(end) => end,
None => return Ok(None),
};
Ok(self
.data
.get(start as usize..end as usize)
.map(|slice| slice.to_vec()))
}
}
/// An iterator that iterates over the serialized bytes of a memory region
pub struct MemoryRegionIterator<'a> {
start_address: u64,
data: &'a [u8],
index: usize,
}
impl<'a> MemoryRegionIterator<'a> {
fn new(start_address: u64, data: &'a [u8]) -> Self {
Self {
start_address,
data,
index: 0,
}
}
}
impl<'a> Iterator for MemoryRegionIterator<'a> {
type Item = u8;
fn next(&mut self) -> Option<Self::Item> {
match self.index {
0 => {
self.index += 1;
Some(MEMORY_REGION_IDENTIFIER)
}
index @ 1..=8 => {
self.index += 1;
Some(self.start_address.to_le_bytes()[index - 1])
}
index @ 9..=16 => {
self.index += 1;
Some((self.data.len() as u64).to_le_bytes()[index - 9])
}
index => {
self.index += 1;
self.data.get(index - 17).copied()
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let remaining_length = 17 + self.data.len() - self.index;
(remaining_length, Some(remaining_length))
}
}
impl<'a> ExactSizeIterator for MemoryRegionIterator<'a> {}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn iterator() {
let region = VecMemoryRegion::new(0x2000_0000, vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0]);
let copied_region = VecMemoryRegion::from_iter(region.bytes());
assert_eq!(region, copied_region);
}
#[test]
fn iterator_len() {
let region = VecMemoryRegion::new(0x2000_0000, vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0]);
let iter = region.bytes();
assert_eq!(iter.len(), iter.count());
let mut iter = region.bytes();
iter.nth(10).unwrap();
assert_eq!(iter.len(), iter.count());
}
}