1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//! Module containing the definitions for memory regions

use arrayvec::ArrayVec;
use serde::{Deserialize, Serialize};

/// The identifier that is being used in the byte iterator to be able to differentiate between memory regions and register data
pub const MEMORY_REGION_IDENTIFIER: u8 = 0x01;

/// A collection of bytes that capture a memory region
#[cfg(feature = "std")]
pub trait MemoryRegion {
    /// Returns the slice of memory that can be found at the given address_range.
    /// If the given address range is not fully within the captured region, then None is returned.
    fn read(
        &self,
        address_range: core::ops::Range<u64>,
    ) -> Result<Option<Vec<u8>>, crate::device_memory::MemoryReadError>;

    /// Reads a byte from the given address if it is present in the region
    fn read_u8(&self, address: u64) -> Result<Option<u8>, crate::device_memory::MemoryReadError> {
        Ok(self.read(address..address + 1)?.map(|b| b[0]))
    }

    /// Reads a u32 from the given address if it is present in the region
    fn read_u32(
        &self,
        address: u64,
        endianness: gimli::RunTimeEndian,
    ) -> Result<Option<u32>, crate::device_memory::MemoryReadError> {
        if let Some(slice) = self
            .read(address..address + 4)?
            .map(|slice| slice[..].try_into().unwrap())
        {
            if gimli::Endianity::is_little_endian(endianness) {
                Ok(Some(u32::from_le_bytes(slice)))
            } else {
                Ok(Some(u32::from_be_bytes(slice)))
            }
        } else {
            Ok(None)
        }
    }
}

/// A memory region that is backed by a stack allocated array
#[derive(Clone, Debug, Deserialize, Serialize, Default, PartialEq, Eq)]
pub struct ArrayMemoryRegion<const SIZE: usize> {
    start_address: u64,
    data: ArrayVec<u8, SIZE>,
}

impl<const SIZE: usize> ArrayMemoryRegion<SIZE> {
    /// Creates a new memory region starting at the given address with the given data
    pub fn new(start_address: u64, data: ArrayVec<u8, SIZE>) -> Self {
        Self {
            start_address,
            data,
        }
    }

    /// Get a byte iterator for this region.
    ///
    /// This iterator can be used to store the region as bytes or to stream over a network.
    /// The iterated bytes include the length so that if you use the FromIterator implementation,
    /// it consumes only the bytes that are part of the collection.
    /// This means you can chain multiple of these iterators after each other.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    /// use stackdump_core::memory_region::{ArrayMemoryRegion, MemoryRegion};
    ///
    /// let region1 = ArrayMemoryRegion::<4>::new(0, ArrayVec::from([1, 2, 3, 4]));
    /// let region2 = ArrayMemoryRegion::<4>::new(100, ArrayVec::from([5, 6, 7, 8]));
    ///
    /// let mut intermediate_buffer = Vec::new();
    ///
    /// intermediate_buffer.extend(region1.bytes());
    /// intermediate_buffer.extend(region2.bytes());
    ///
    /// let mut intermediate_iter = intermediate_buffer.iter();
    ///
    /// assert_eq!(region1, ArrayMemoryRegion::<4>::from_iter(&mut intermediate_iter));
    /// assert_eq!(region2, ArrayMemoryRegion::<4>::from_iter(&mut intermediate_iter));
    /// ```
    pub fn bytes(&self) -> MemoryRegionIterator {
        MemoryRegionIterator::new(self.start_address, &self.data)
    }

    /// Clears the existing memory data and copies the new data from the given pointer
    ///
    /// If the data_len is greater than the capacity of this memory region, then this function will panic.
    ///
    /// ## Safety
    ///
    /// The entire block of memory from `data_ptr .. data_ptr + data_len` must be readable.
    /// (A memcpy must be possible with the pointer as source)
    pub unsafe fn copy_from_memory(&mut self, data_ptr: *const u8, data_len: usize) {
        self.start_address = data_ptr as u64;
        self.data.clear();

        assert!(data_len <= self.data.capacity());

        self.data.set_len(data_len);
        self.data.as_mut_ptr().copy_from(data_ptr, data_len);
    }
}

#[cfg(feature = "std")]
impl<const SIZE: usize> MemoryRegion for ArrayMemoryRegion<SIZE> {
    fn read(
        &self,
        index: core::ops::Range<u64>,
    ) -> Result<Option<Vec<u8>>, crate::device_memory::MemoryReadError> {
        let start = match index.start.checked_sub(self.start_address) {
            Some(start) => start,
            None => return Ok(None),
        };
        let end = match index.end.checked_sub(self.start_address) {
            Some(end) => end,
            None => return Ok(None),
        };
        Ok(self
            .data
            .get(start as usize..end as usize)
            .map(|slice| slice.to_vec()))
    }
}

impl<'a, const SIZE: usize> FromIterator<&'a u8> for ArrayMemoryRegion<SIZE> {
    fn from_iter<T: IntoIterator<Item = &'a u8>>(iter: T) -> Self {
        Self::from_iter(iter.into_iter().copied())
    }
}

impl<const SIZE: usize> FromIterator<u8> for ArrayMemoryRegion<SIZE> {
    fn from_iter<T: IntoIterator<Item = u8>>(iter: T) -> Self {
        let mut iter = iter.into_iter();

        assert_eq!(
            iter.next().unwrap(),
            MEMORY_REGION_IDENTIFIER,
            "The given iterator is not for a memory region"
        );

        let start_address = u64::from_le_bytes([
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
        ]);

        let length = u64::from_le_bytes([
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
        ]);

        let data = ArrayVec::from_iter(iter.take(length as usize));

        Self {
            start_address,
            data,
        }
    }
}

/// A memory region that is backed by a stack allocated array
#[cfg(feature = "std")]
#[derive(Clone, Debug, Deserialize, Serialize, Default, PartialEq, Eq)]
pub struct VecMemoryRegion {
    start_address: u64,
    data: Vec<u8>,
}

#[cfg(feature = "std")]
impl VecMemoryRegion {
    /// Creates a new memory region starting at the given address with the given data
    pub fn new(start_address: u64, data: Vec<u8>) -> Self {
        Self {
            start_address,
            data,
        }
    }

    /// Get a byte iterator for this region.
    ///
    /// This iterator can be used to store the region as bytes or to stream over a network.
    /// The iterated bytes include the length so that if you use the FromIterator implementation,
    /// it consumes only the bytes that are part of the collection.
    /// This means you can chain multiple of these iterators after each other.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    /// use stackdump_core::memory_region::{ArrayMemoryRegion, MemoryRegion};
    ///
    /// let region1 = ArrayMemoryRegion::<4>::new(0, ArrayVec::from([1, 2, 3, 4]));
    /// let region2 = ArrayMemoryRegion::<4>::new(100, ArrayVec::from([5, 6, 7, 8]));
    ///
    /// let mut intermediate_buffer = Vec::new();
    ///
    /// intermediate_buffer.extend(region1.bytes());
    /// intermediate_buffer.extend(region2.bytes());
    ///
    /// let mut intermediate_iter = intermediate_buffer.iter();
    ///
    /// assert_eq!(region1, ArrayMemoryRegion::<4>::from_iter(&mut intermediate_iter));
    /// assert_eq!(region2, ArrayMemoryRegion::<4>::from_iter(&mut intermediate_iter));
    /// ```
    pub fn bytes(&self) -> MemoryRegionIterator {
        MemoryRegionIterator::new(self.start_address, &self.data)
    }

    /// Clears the existing memory data and copies the new data from the given pointer
    ///
    /// If the data_len is greater than the capacity of this memory region, then this function will panic.
    ///
    /// ## Safety
    ///
    /// The entire block of memory from `data_ptr .. data_ptr + data_len` must be readable.
    /// (A memcpy must be possible with the pointer as source)
    pub unsafe fn copy_from_memory(&mut self, data_ptr: *const u8, data_len: usize) {
        self.start_address = data_ptr as u64;
        self.data.clear();
        self.data.resize(data_len, 0);

        self.data.as_mut_ptr().copy_from(data_ptr, data_len);
    }
}

#[cfg(feature = "std")]
impl MemoryRegion for VecMemoryRegion {
    fn read(
        &self,
        index: core::ops::Range<u64>,
    ) -> Result<Option<Vec<u8>>, crate::device_memory::MemoryReadError> {
        let start = match index.start.checked_sub(self.start_address) {
            Some(start) => start,
            None => return Ok(None),
        };
        let end = match index.end.checked_sub(self.start_address) {
            Some(end) => end,
            None => return Ok(None),
        };
        Ok(self
            .data
            .get(start as usize..end as usize)
            .map(|slice| slice.to_vec()))
    }
}

#[cfg(feature = "std")]
impl<'a> FromIterator<&'a u8> for VecMemoryRegion {
    fn from_iter<T: IntoIterator<Item = &'a u8>>(iter: T) -> Self {
        Self::from_iter(iter.into_iter().copied())
    }
}

#[cfg(feature = "std")]
impl FromIterator<u8> for VecMemoryRegion {
    fn from_iter<T: IntoIterator<Item = u8>>(iter: T) -> Self {
        let mut iter = iter.into_iter();

        assert_eq!(
            iter.next().unwrap(),
            MEMORY_REGION_IDENTIFIER,
            "The given iterator is not for a memory region"
        );

        let start_address = u64::from_le_bytes([
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
        ]);

        let length = u64::from_le_bytes([
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
            iter.next().unwrap(),
        ]);

        let data = Vec::from_iter(iter.take(length as usize));

        Self {
            start_address,
            data,
        }
    }
}

/// A memory region that is backed by a slice
#[derive(Clone, Debug, Deserialize, Serialize, Default, PartialEq, Eq)]
pub struct SliceMemoryRegion<'a> {
    data: &'a [u8],
}

impl<'a> SliceMemoryRegion<'a> {
    /// Creates a new memory region starting at the given address with the given data
    pub fn new(data: &'a [u8]) -> Self {
        Self { data }
    }

    /// Get a byte iterator for this region.
    ///
    /// This iterator can be used to store the region as bytes or to stream over a network.
    /// The iterated bytes include the length so that if you use the FromIterator implementation,
    /// it consumes only the bytes that are part of the collection.
    /// This means you can chain multiple of these iterators after each other.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    /// use stackdump_core::memory_region::{ArrayMemoryRegion, MemoryRegion};
    ///
    /// let region1 = ArrayMemoryRegion::<4>::new(0, ArrayVec::from([1, 2, 3, 4]));
    /// let region2 = ArrayMemoryRegion::<4>::new(100, ArrayVec::from([5, 6, 7, 8]));
    ///
    /// let mut intermediate_buffer = Vec::new();
    ///
    /// intermediate_buffer.extend(region1.bytes());
    /// intermediate_buffer.extend(region2.bytes());
    ///
    /// let mut intermediate_iter = intermediate_buffer.iter();
    ///
    /// assert_eq!(region1, ArrayMemoryRegion::<4>::from_iter(&mut intermediate_iter));
    /// assert_eq!(region2, ArrayMemoryRegion::<4>::from_iter(&mut intermediate_iter));
    /// ```
    pub fn bytes(&self) -> MemoryRegionIterator {
        let start_address = self.data.as_ptr() as u64;
        MemoryRegionIterator::new(start_address, self.data)
    }

    /// This function is especially unsafe.
    /// The memory region will reference the given data for its entire lifetime.
    ///
    /// ## Safety
    ///
    /// The entire block of memory from `data_ptr .. data_ptr + data_len` must be readable.
    /// (A memcpy must be possible with the pointer as source)
    ///
    /// You must not have another reference to this block of memory or any object that resides in this memory
    /// during the entire lifetime of the object
    pub unsafe fn copy_from_memory(&mut self, data_ptr: *const u8, data_len: usize) {
        self.data = core::slice::from_raw_parts(data_ptr, data_len);
    }
}

#[cfg(feature = "std")]
impl<'a> MemoryRegion for SliceMemoryRegion<'a> {
    fn read(
        &self,
        index: core::ops::Range<u64>,
    ) -> Result<Option<Vec<u8>>, crate::device_memory::MemoryReadError> {
        let start_address = self.data.as_ptr() as u64;
        let start = match index.start.checked_sub(start_address) {
            Some(start) => start,
            None => return Ok(None),
        };
        let end = match index.end.checked_sub(start_address) {
            Some(end) => end,
            None => return Ok(None),
        };
        Ok(self
            .data
            .get(start as usize..end as usize)
            .map(|slice| slice.to_vec()))
    }
}

/// An iterator that iterates over the serialized bytes of a memory region
pub struct MemoryRegionIterator<'a> {
    start_address: u64,
    data: &'a [u8],
    index: usize,
}

impl<'a> MemoryRegionIterator<'a> {
    fn new(start_address: u64, data: &'a [u8]) -> Self {
        Self {
            start_address,
            data,
            index: 0,
        }
    }
}

impl<'a> Iterator for MemoryRegionIterator<'a> {
    type Item = u8;

    fn next(&mut self) -> Option<Self::Item> {
        match self.index {
            0 => {
                self.index += 1;
                Some(MEMORY_REGION_IDENTIFIER)
            }
            index @ 1..=8 => {
                self.index += 1;
                Some(self.start_address.to_le_bytes()[index - 1])
            }
            index @ 9..=16 => {
                self.index += 1;
                Some((self.data.len() as u64).to_le_bytes()[index - 9])
            }
            index => {
                self.index += 1;
                self.data.get(index - 17).copied()
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let remaining_length = 17 + self.data.len() - self.index;
        (remaining_length, Some(remaining_length))
    }
}

impl<'a> ExactSizeIterator for MemoryRegionIterator<'a> {}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn iterator() {
        let region = VecMemoryRegion::new(0x2000_0000, vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0]);
        let copied_region = VecMemoryRegion::from_iter(region.bytes());

        assert_eq!(region, copied_region);
    }

    #[test]
    fn iterator_len() {
        let region = VecMemoryRegion::new(0x2000_0000, vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0]);
        let iter = region.bytes();
        assert_eq!(iter.len(), iter.count());

        let mut iter = region.bytes();
        iter.nth(10).unwrap();
        assert_eq!(iter.len(), iter.count());
    }
}