1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
use std::{
marker::PhantomData,
mem,
ops::{BitAnd, Range},
sync::atomic::Ordering,
};
use bit_bounds::{usize::Int, IsPowerOf2};
use crate::{
helpers::{active_phase_bit, one_shifted, slot_index},
queue::{Inner, TaskQueue, INDEX_SHIFT},
TaskRef,
};
pub struct PendingAssignment<T: TaskQueue, const N: usize = 2048>
where
Int<N>: IsPowerOf2,
{
base_slot: usize,
queue_ptr: *const Inner<T, N>,
}
impl<T, const N: usize> PendingAssignment<T, N>
where
T: TaskQueue,
Int<N>: IsPowerOf2,
{
pub(crate) fn new(base_slot: usize, queue_ptr: *const Inner<T, N>) -> Self {
PendingAssignment {
base_slot,
queue_ptr,
}
}
#[inline(always)]
fn queue(&self) -> &Inner<T, N> {
unsafe { &*self.queue_ptr }
}
pub fn into_assignment(self) -> TaskAssignment<T, N> {
let phase_bit = active_phase_bit::<N>(&self.base_slot);
let end_slot = self.queue().slot.fetch_xor(phase_bit, Ordering::Relaxed);
let task_range = if (N << INDEX_SHIFT).bitand(self.base_slot ^ end_slot).eq(&0) {
let start = (self.base_slot >> INDEX_SHIFT) & (N - 1);
let end = (end_slot >> INDEX_SHIFT) & (N - 1);
start..end
} else {
(self.base_slot >> INDEX_SHIFT) & (N - 1)..N
};
let queue_ptr = self.queue_ptr;
mem::forget(self);
TaskAssignment::new(task_range, queue_ptr)
}
fn deoccupy_buffer(&self) {
let index = slot_index::<N>(&self.base_slot);
let shifted_sub = one_shifted::<N>(&index);
self
.queue()
.occupancy
.fetch_sub(shifted_sub, Ordering::Relaxed);
}
}
unsafe impl<T> Send for PendingAssignment<T> where T: TaskQueue {}
unsafe impl<T> Sync for PendingAssignment<T> where T: TaskQueue {}
impl<T, const N: usize> Drop for PendingAssignment<T, N>
where
T: TaskQueue,
Int<N>: IsPowerOf2,
{
fn drop(&mut self) {
self.deoccupy_buffer();
}
}
pub struct TaskAssignment<T: TaskQueue, const N: usize = 2048>
where
Int<N>: IsPowerOf2,
{
task_range: Range<usize>,
queue_ptr: *const Inner<T, N>,
}
impl<T, const N: usize> TaskAssignment<T, N>
where
T: TaskQueue,
Int<N>: IsPowerOf2,
{
fn new(task_range: Range<usize>, queue_ptr: *const Inner<T, N>) -> Self {
TaskAssignment {
task_range,
queue_ptr,
}
}
#[inline(always)]
fn queue(&self) -> &Inner<T, N> {
unsafe { &*self.queue_ptr }
}
pub fn tasks(&self) -> &[TaskRef<T>] {
unsafe { mem::transmute(self.queue().buffer.get_unchecked(self.task_range.clone())) }
}
pub fn map<F>(self, op: F) -> CompletionReceipt<T>
where
F: Fn(T::Task) -> T::Value + Sync,
{
self.tasks().iter().for_each(|task_ref| unsafe {
let task = task_ref.take_task_unchecked();
task_ref.resolve_unchecked(op(task));
});
self.into_completion_receipt()
}
fn deoccupy_buffer(&self) {
let shifted_sub = one_shifted::<N>(&self.task_range.start);
self
.queue()
.occupancy
.fetch_sub(shifted_sub, Ordering::Relaxed);
}
fn into_completion_receipt(self) -> CompletionReceipt<T> {
self.deoccupy_buffer();
mem::forget(self);
CompletionReceipt::new()
}
}
impl<T, const N: usize> Drop for TaskAssignment<T, N>
where
T: TaskQueue,
Int<N>: IsPowerOf2,
{
fn drop(&mut self) {
self.deoccupy_buffer();
}
}
unsafe impl<T> Send for TaskAssignment<T> where T: TaskQueue {}
unsafe impl<T> Sync for TaskAssignment<T> where T: TaskQueue {}
pub struct CompletionReceipt<T: TaskQueue>(PhantomData<T>);
impl<T> CompletionReceipt<T>
where
T: TaskQueue,
{
fn new() -> Self {
CompletionReceipt(PhantomData)
}
}