1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
// -*- coding: utf-8 -*-
// ------------------------------------------------------------------------------------------------
// Copyright © 2021, stack-graphs authors.
// Licensed under either of Apache License, Version 2.0, or MIT license, at your option.
// Please see the LICENSE-APACHE or LICENSE-MIT files in this distribution for license details.
// ------------------------------------------------------------------------------------------------

//! Cache-friendly arena allocation for stack graph data.
//!
//! A stack graph is composed of instances of many different data types, and to store the graph
//! structure itself, we need cyclic or self-referential data types.  The typical way to achieve
//! this in Rust is to use [arena allocation][], where all of the instances of a particular type
//! are stored in a single vector.  You then use indexes into this vector to store references to a
//! data instance.  Because indexes are just numbers, you don't run afoul of borrow checker.  And
//! because all instances live together in a continguous region of memory, your data access
//! patterns are very cache-friendly.
//!
//! This module implements a simple arena allocation scheme for stack graphs.  An
//! [`Arena<T>`][`Arena`] is an arena that holds all of the instances of type `T` for a stack
//! graph.  A [`Handle<T>`][`Handle`] holds the index of a particular instance of `T` in its arena.
//! All of our stack graph data types then use handles to refer to other parts of the stack graph.
//!
//! Note that our arena implementation does not support deletion!  Any content that you add to a
//! [`StackGraph`][] will live as long as the stack graph itself does.  The entire region of memory
//! for each arena will be freed in a single operation when the stack graph is dropped.
//!
//! [arena allocation]: https://en.wikipedia.org/wiki/Region-based_memory_management
//! [`Arena`]: struct.Arena.html
//! [`Handle`]: struct.Handle.html
//! [`StackGraph`]: ../graph/struct.StackGraph.html

use std::cell::Cell;
use std::fmt::Debug;
use std::hash::Hash;
use std::hash::Hasher;
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::num::NonZeroU32;
use std::ops::Index;
use std::ops::IndexMut;

use controlled_option::Niche;

use crate::utils::cmp_option;
use crate::utils::equals_option;

//-------------------------------------------------------------------------------------------------
// Arenas and handles

/// A handle to an instance of type `T` that was allocated from an [`Arena`][].
///
/// #### Safety
///
/// Because of the type parameter `T`, the compiler can ensure that you don't use a handle for one
/// type to index into an arena of another type.  However, if you have multiple arenas for the
/// _same type_, we do not do anything to ensure that you only use a handle with the corresponding
/// arena.
#[repr(transparent)]
pub struct Handle<T> {
    index: NonZeroU32,
    _phantom: PhantomData<T>,
}

impl<T> Handle<T> {
    fn new(index: NonZeroU32) -> Handle<T> {
        Handle {
            index,
            _phantom: PhantomData,
        }
    }

    #[inline(always)]
    pub fn as_u32(self) -> u32 {
        self.index.get()
    }

    #[inline(always)]
    pub fn as_usize(self) -> usize {
        self.index.get() as usize
    }
}

impl<T> Niche for Handle<T> {
    type Output = u32;

    #[inline]
    fn none() -> Self::Output {
        0
    }

    #[inline]
    fn is_none(value: &Self::Output) -> bool {
        *value == 0
    }

    #[inline]
    fn into_some(value: Self) -> Self::Output {
        value.index.get()
    }

    #[inline]
    fn from_some(value: Self::Output) -> Self {
        Self::new(unsafe { NonZeroU32::new_unchecked(value) })
    }
}

// Normally we would #[derive] all of these traits, but the auto-derived implementations all
// require that T implement the trait as well.  We don't store any real instances of T inside of
// Handle, so our implementations do _not_ require that.

impl<T> Clone for Handle<T> {
    fn clone(&self) -> Handle<T> {
        Handle::new(self.index)
    }
}

impl<T> Copy for Handle<T> {}

impl<T> Debug for Handle<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("Handle")
            .field("index", &self.index)
            .finish()
    }
}

impl<T> Eq for Handle<T> {}

impl<T> Hash for Handle<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.index.hash(state);
    }
}

impl<T> Ord for Handle<T> {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.index.cmp(&other.index)
    }
}

impl<T> PartialEq for Handle<T> {
    fn eq(&self, other: &Self) -> bool {
        self.index == other.index
    }
}

impl<T> PartialOrd for Handle<T> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        self.index.partial_cmp(&other.index)
    }
}

// Handles are always Send and Sync, even if the underlying types are not.  After all, a handle is
// just a number!  And you _also_ need access to the Arena (which _won't_ be Send/Sync if T isn't)
// to dereference the handle.
unsafe impl<T> Send for Handle<T> {}
unsafe impl<T> Sync for Handle<T> {}

/// Manages the life cycle of instances of type `T`.  You can allocate new instances of `T` from
/// the arena.  All of the instances managed by this arena will be dropped as a single operation
/// when the arena itself is dropped.
pub struct Arena<T> {
    items: Vec<MaybeUninit<T>>,
}

impl<T> Drop for Arena<T> {
    fn drop(&mut self) {
        unsafe {
            let items = std::mem::transmute::<_, &mut [T]>(&mut self.items[1..]) as *mut [T];
            items.drop_in_place();
        }
    }
}

impl<T> Arena<T> {
    /// Creates a new arena.
    pub fn new() -> Arena<T> {
        Arena {
            items: vec![MaybeUninit::uninit()],
        }
    }

    /// Adds a new instance to this arena, returning a stable handle to it.
    ///
    /// Note that we do not deduplicate instances of `T` in any way.  If you add two instances that
    /// have the same content, you will get distinct handles for each one.
    pub fn add(&mut self, item: T) -> Handle<T> {
        let index = self.items.len() as u32;
        self.items.push(MaybeUninit::new(item));
        Handle::new(unsafe { NonZeroU32::new_unchecked(index) })
    }

    /// Dereferences a handle to an instance owned by this arena, returning a reference to it.
    pub fn get(&self, handle: Handle<T>) -> &T {
        unsafe { std::mem::transmute(&self.items[handle.as_usize()]) }
    }
    ///
    /// Dereferences a handle to an instance owned by this arena, returning a mutable reference to
    /// it.
    pub fn get_mut(&mut self, handle: Handle<T>) -> &mut T {
        unsafe { std::mem::transmute(&mut self.items[handle.as_usize()]) }
    }

    /// Returns an iterator of all of the handles in this arena.  (Note that this iterator does not
    /// retain a reference to the arena!)
    pub fn iter_handles(&self) -> impl Iterator<Item = Handle<T>> {
        (1..self.items.len())
            .into_iter()
            .map(|index| Handle::new(unsafe { NonZeroU32::new_unchecked(index as u32) }))
    }

    /// Returns a pointer to this arena's storage.
    pub(crate) fn as_ptr(&self) -> *const T {
        self.items.as_ptr() as *const T
    }

    /// Returns the number of instances stored in this arena.
    #[inline(always)]
    pub fn len(&self) -> usize {
        self.items.len()
    }
}

//-------------------------------------------------------------------------------------------------
// Supplemental arenas

/// A supplemental arena lets you store additional data about some data type that is itself stored
/// in an [`Arena`][].
///
/// We implement `Index` and `IndexMut` for a more ergonomic syntax.  Please note that when
/// indexing in an _immutable_ context, we **_panic_** if you try to access data for a handle that
/// doesn't exist in the arena.  (Use the [`get`][] method if you don't know whether the value
/// exists or not.)  In a _mutable_ context, we automatically create a `Default` instance of the
/// type if there isn't already an instance for that handle in the arena.
///
/// ```
/// # use stack_graphs::arena::Arena;
/// # use stack_graphs::arena::SupplementalArena;
/// // We need an Arena to create handles.
/// let mut arena = Arena::<u32>::new();
/// let handle = arena.add(1);
///
/// let mut supplemental = SupplementalArena::<u32, String>::new();
///
/// // But indexing will panic if the element doesn't already exist.
/// // assert_eq!(supplemental[handle].as_str(), "");
///
/// // The `get` method is always safe, since it returns an Option.
/// assert_eq!(supplemental.get(handle), None);
///
/// // Once we've added the element to the supplemental arena, indexing
/// // won't panic anymore.
/// supplemental[handle] = "hello".to_string();
/// assert_eq!(supplemental[handle].as_str(), "hello");
/// ```
///
/// [`Arena`]: struct.Arena.html
/// [`get`]: #method.get
pub struct SupplementalArena<H, T> {
    items: Vec<T>,
    _phantom: PhantomData<H>,
}

impl<H, T> SupplementalArena<H, T> {
    /// Creates a new, empty supplemental arena.
    pub fn new() -> SupplementalArena<H, T> {
        SupplementalArena {
            items: Vec::new(),
            _phantom: PhantomData,
        }
    }

    /// Creates a new, empty supplemental arena, preallocating enough space to store supplemental
    /// data for all of the instances that have already been allocated in a (regular) arena.
    pub fn with_capacity(arena: &Arena<H>) -> SupplementalArena<H, T> {
        SupplementalArena {
            items: Vec::with_capacity(arena.items.len()),
            _phantom: PhantomData,
        }
    }

    /// Returns the item belonging to a particular handle, if it exists.
    pub fn get(&self, handle: Handle<H>) -> Option<&T> {
        self.items.get(handle.as_usize() - 1)
    }

    /// Returns a mutable reference to the item belonging to a particular handle, if it exists.
    pub fn get_mut(&mut self, handle: Handle<H>) -> Option<&mut T> {
        self.items.get_mut(handle.as_usize() - 1)
    }
}

impl<H, T> SupplementalArena<H, T>
where
    T: Default,
{
    /// Returns a mutable reference to the item belonging to a particular handle, creating it first
    /// (using the type's `Default` implementation) if it doesn't already exist.
    pub fn get_mut_or_default(&mut self, handle: Handle<H>) -> &mut T {
        let index = handle.as_usize();
        if self.items.len() < index {
            self.items.resize_with(index, || T::default());
        }
        unsafe { self.items.get_unchecked_mut(index - 1) }
    }
}

impl<H, T> Default for SupplementalArena<H, T> {
    fn default() -> SupplementalArena<H, T> {
        SupplementalArena::new()
    }
}

impl<H, T> Index<Handle<H>> for SupplementalArena<H, T> {
    type Output = T;
    fn index(&self, handle: Handle<H>) -> &T {
        &self.items[handle.as_usize() - 1]
    }
}

impl<H, T> IndexMut<Handle<H>> for SupplementalArena<H, T>
where
    T: Default,
{
    fn index_mut(&mut self, handle: Handle<H>) -> &mut T {
        self.get_mut_or_default(handle)
    }
}

//-------------------------------------------------------------------------------------------------
// Arena-allocated lists

/// An arena-allocated singly-linked list.
///
/// Linked lists are often a poor choice because they aren't very cache-friendly.  However, this
/// linked list implementation _should_ be cache-friendly, since the individual cells are allocated
/// out of an arena.
#[repr(C)]
#[derive(Niche)]
pub struct List<T> {
    // The value of this handle will be EMPTY_LIST_HANDLE if the list is empty.  For an
    // Option<List<T>>, the value will be zero (via the Option<NonZero> optimization) if the list
    // is None.
    #[niche]
    cells: Handle<ListCell<T>>,
}

#[doc(hidden)]
#[repr(C)]
pub struct ListCell<T> {
    head: T,
    // The value of this handle will be EMPTY_LIST_HANDLE if this is the last element of the list.
    tail: Handle<ListCell<T>>,
}

const EMPTY_LIST_HANDLE: NonZeroU32 = unsafe { NonZeroU32::new_unchecked(u32::MAX) };

// An arena that's used to manage `List<T>` instances.
//
// (Note that the arena doesn't store `List<T>` itself; it stores the `ListCell<T>`s that the lists
// are made of.)
pub type ListArena<T> = Arena<ListCell<T>>;

impl<T> List<T> {
    /// Creates a new `ListArena` that will manage lists of this type.
    pub fn new_arena() -> ListArena<T> {
        ListArena::new()
    }

    /// Returns whether this list is empty.
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.cells.index == EMPTY_LIST_HANDLE
    }

    /// Returns an empty list.
    pub fn empty() -> List<T> {
        List {
            cells: Handle::new(EMPTY_LIST_HANDLE),
        }
    }

    pub fn from_handle(handle: Handle<ListCell<T>>) -> List<T> {
        List { cells: handle }
    }

    /// Returns a handle to the head of the list.
    pub fn handle(&self) -> Handle<ListCell<T>> {
        self.cells
    }

    /// Pushes a new element onto the front of this list.
    pub fn push_front(&mut self, arena: &mut ListArena<T>, head: T) {
        self.cells = arena.add(ListCell {
            head,
            tail: self.cells,
        });
    }

    /// Removes and returns the element at the front of this list.  If the list is empty, returns
    /// `None`.
    pub fn pop_front<'a>(&mut self, arena: &'a ListArena<T>) -> Option<&'a T> {
        if self.is_empty() {
            return None;
        }
        let cell = arena.get(self.cells);
        self.cells = cell.tail;
        Some(&cell.head)
    }

    /// Returns an iterator over the elements of this list.
    pub fn iter<'a>(mut self, arena: &'a ListArena<T>) -> impl Iterator<Item = &'a T> + 'a {
        std::iter::from_fn(move || self.pop_front(arena))
    }
}

impl<T> List<T> {
    pub fn equals_with<F>(mut self, arena: &ListArena<T>, mut other: List<T>, mut eq: F) -> bool
    where
        F: FnMut(&T, &T) -> bool,
    {
        loop {
            if self.cells == other.cells {
                return true;
            }
            if !equals_option(self.pop_front(arena), other.pop_front(arena), &mut eq) {
                return false;
            }
        }
    }

    pub fn cmp_with<F>(
        mut self,
        arena: &ListArena<T>,
        mut other: List<T>,
        mut cmp: F,
    ) -> std::cmp::Ordering
    where
        F: FnMut(&T, &T) -> std::cmp::Ordering,
    {
        use std::cmp::Ordering;
        loop {
            if self.cells == other.cells {
                return Ordering::Equal;
            }
            match cmp_option(self.pop_front(arena), other.pop_front(arena), &mut cmp) {
                Ordering::Equal => (),
                result @ _ => return result,
            }
        }
    }
}

impl<T> List<T>
where
    T: Eq,
{
    pub fn equals(self, arena: &ListArena<T>, other: List<T>) -> bool {
        self.equals_with(arena, other, |a, b| *a == *b)
    }
}

impl<T> List<T>
where
    T: Ord,
{
    pub fn cmp(self, arena: &ListArena<T>, other: List<T>) -> std::cmp::Ordering {
        self.cmp_with(arena, other, |a, b| a.cmp(b))
    }
}

// Normally we would #[derive] all of these traits, but the auto-derived implementations all
// require that T implement the trait as well.  We don't store any real instances of T inside of
// List, so our implementations do _not_ require that.

impl<T> Clone for List<T> {
    fn clone(&self) -> List<T> {
        List { cells: self.cells }
    }
}

impl<T> Copy for List<T> {}

//-------------------------------------------------------------------------------------------------
// Reversible arena-allocated list

/// An arena-allocated list that can be reversed.
///
/// Well, that is, you can reverse a [`List`][] just fine by yourself.  This type takes care of
/// doing that for you, and importantly, _saves the result_ so that if you only have to compute the
/// reversal once even if you need to access it multiple times.
///
/// [`List`]: struct.List.html
#[repr(C)]
#[derive(Niche)]
pub struct ReversibleList<T> {
    #[niche]
    cells: Handle<ReversibleListCell<T>>,
}

#[repr(C)]
#[doc(hidden)]
pub struct ReversibleListCell<T> {
    head: T,
    tail: Handle<ReversibleListCell<T>>,
    reversed: Cell<Option<Handle<ReversibleListCell<T>>>>,
}

// An arena that's used to manage `ReversibleList<T>` instances.
//
// (Note that the arena doesn't store `ReversibleList<T>` itself; it stores the
// `ReversibleListCell<T>`s that the lists are made of.)
pub type ReversibleListArena<T> = Arena<ReversibleListCell<T>>;

impl<T> ReversibleList<T> {
    /// Creates a new `ReversibleListArena` that will manage lists of this type.
    pub fn new_arena() -> ReversibleListArena<T> {
        ReversibleListArena::new()
    }

    /// Returns whether this list is empty.
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        ReversibleListCell::is_empty_handle(self.cells)
    }

    /// Returns an empty list.
    pub fn empty() -> ReversibleList<T> {
        ReversibleList {
            cells: ReversibleListCell::empty_handle(),
        }
    }

    /// Returns whether we have already calculated the reversal of this list.
    pub fn have_reversal(&self, arena: &ReversibleListArena<T>) -> bool {
        if self.is_empty() {
            // The empty list is already reversed.
            return true;
        }
        arena.get(self.cells).reversed.get().is_some()
    }

    /// Pushes a new element onto the front of this list.
    pub fn push_front(&mut self, arena: &mut ReversibleListArena<T>, head: T) {
        self.cells = arena.add(ReversibleListCell::new(head, self.cells, None));
    }

    /// Removes and returns the element at the front of this list.  If the list is empty, returns
    /// `None`.
    pub fn pop_front<'a>(&mut self, arena: &'a ReversibleListArena<T>) -> Option<&'a T> {
        if self.is_empty() {
            return None;
        }
        let cell = arena.get(self.cells);
        self.cells = cell.tail;
        Some(&cell.head)
    }

    /// Returns an iterator over the elements of this list.
    pub fn iter<'a>(
        mut self,
        arena: &'a ReversibleListArena<T>,
    ) -> impl Iterator<Item = &'a T> + 'a {
        std::iter::from_fn(move || self.pop_front(arena))
    }
}

impl<T> ReversibleList<T>
where
    T: Clone,
{
    /// Reverses the list.  Since we're already caching everything in an arena, we make sure to
    /// only calculate the reversal once, returning it as-is if you call this function multiple
    /// times.
    pub fn reverse(&mut self, arena: &mut ReversibleListArena<T>) {
        if self.is_empty() {
            return;
        }
        self.ensure_reversal_available(arena);
        self.cells = arena.get(self.cells).reversed.get().unwrap();
    }

    /// Ensures that the reversal of this list is available.  It can be useful to precalculate this
    /// when you have mutable access to the arena, so that you can then reverse and un-reverse the
    /// list later when you only have shared access to it.
    pub fn ensure_reversal_available(&mut self, arena: &mut ReversibleListArena<T>) {
        // First check to see if the list has already been reversed.
        if self.is_empty() {
            // The empty list is already reversed.
            return;
        }
        if arena.get(self.cells).reversed.get().is_some() {
            return;
        }

        // If not, reverse the list and cache the result.
        let new_reversed = ReversibleListCell::reverse(self.cells, arena);
        arena.get(self.cells).reversed.set(Some(new_reversed));
    }
}

impl<T> ReversibleList<T> {
    /// Reverses the list, assuming that the reversal has already been computed.  If it hasn't we
    /// return an error.
    pub fn reverse_reused(&mut self, arena: &ReversibleListArena<T>) -> Result<(), ()> {
        if self.is_empty() {
            // The empty list is already reversed.
            return Ok(());
        }
        self.cells = arena.get(self.cells).reversed.get().ok_or(())?;
        Ok(())
    }
}

impl<T> ReversibleListCell<T> {
    fn new(
        head: T,
        tail: Handle<ReversibleListCell<T>>,
        reversed: Option<Handle<ReversibleListCell<T>>>,
    ) -> ReversibleListCell<T> {
        ReversibleListCell {
            head,
            tail,
            reversed: Cell::new(reversed),
        }
    }

    fn empty_handle() -> Handle<ReversibleListCell<T>> {
        Handle::new(EMPTY_LIST_HANDLE)
    }

    fn is_empty_handle(handle: Handle<ReversibleListCell<T>>) -> bool {
        handle.index == EMPTY_LIST_HANDLE
    }
}

impl<T> ReversibleListCell<T>
where
    T: Clone,
{
    fn reverse(
        forwards: Handle<ReversibleListCell<T>>,
        arena: &mut ReversibleListArena<T>,
    ) -> Handle<ReversibleListCell<T>> {
        let mut reversed = ReversibleListCell::empty_handle();
        let mut current = forwards;
        while !ReversibleListCell::is_empty_handle(current) {
            let cell = arena.get(current);
            let head = cell.head.clone();
            current = cell.tail;
            reversed = arena.add(Self::new(
                head,
                reversed,
                // The reversal of the reversal that we just calculated is our original list!  Go
                // ahead and cache that away preemptively.
                if ReversibleListCell::is_empty_handle(current) {
                    Some(forwards)
                } else {
                    None
                },
            ));
        }
        reversed
    }
}

impl<T> ReversibleList<T> {
    pub fn equals_with<F>(
        mut self,
        arena: &ReversibleListArena<T>,
        mut other: ReversibleList<T>,
        mut eq: F,
    ) -> bool
    where
        F: FnMut(&T, &T) -> bool,
    {
        loop {
            if self.cells == other.cells {
                return true;
            }
            if !equals_option(self.pop_front(arena), other.pop_front(arena), &mut eq) {
                return false;
            }
        }
    }

    pub fn cmp_with<F>(
        mut self,
        arena: &ReversibleListArena<T>,
        mut other: ReversibleList<T>,
        mut cmp: F,
    ) -> std::cmp::Ordering
    where
        F: FnMut(&T, &T) -> std::cmp::Ordering,
    {
        use std::cmp::Ordering;
        loop {
            if self.cells == other.cells {
                return Ordering::Equal;
            }
            match cmp_option(self.pop_front(arena), other.pop_front(arena), &mut cmp) {
                Ordering::Equal => (),
                result @ _ => return result,
            }
        }
    }
}

impl<T> ReversibleList<T>
where
    T: Eq,
{
    pub fn equals(self, arena: &ReversibleListArena<T>, other: ReversibleList<T>) -> bool {
        self.equals_with(arena, other, |a, b| *a == *b)
    }
}

impl<T> ReversibleList<T>
where
    T: Ord,
{
    pub fn cmp(
        self,
        arena: &ReversibleListArena<T>,
        other: ReversibleList<T>,
    ) -> std::cmp::Ordering {
        self.cmp_with(arena, other, |a, b| a.cmp(b))
    }
}

// Normally we would #[derive] all of these traits, but the auto-derived implementations all
// require that T implement the trait as well.  We don't store any real instances of T inside of
// ReversibleList, so our implementations do _not_ require that.

impl<T> Clone for ReversibleList<T> {
    fn clone(&self) -> ReversibleList<T> {
        ReversibleList { cells: self.cells }
    }
}

impl<T> Copy for ReversibleList<T> {}

//-------------------------------------------------------------------------------------------------
// Arena-allocated deque

/// An arena-allocated deque.
///
/// Under the covers, this is implemented as a [`List`][].  Because these lists are singly-linked,
/// we can only add elements to, and remove them from, one side of the list.
///
/// To handle this, each deque stores its contents either _forwards_ or _backwards_.  We
/// automatically shift between these two representations as needed, depending on the requirements
/// of each method.
///
/// Note that we cache the result of reversing the list, so it should be quick to switch back and
/// forth between representations _as long as you have not added any additional elements to the
/// deque_!  If performance is critical, you should ensure that you don't call methods in a pattern
/// that causes the deque to reverse itself each time you add an element.
///
/// [`List`]: struct.List.html
#[repr(C)]
#[derive(Niche)]
pub struct Deque<T> {
    #[niche]
    list: ReversibleList<T>,
    direction: DequeDirection,
}

#[repr(C)]
#[derive(Clone, Copy, Eq, Hash, Ord, PartialEq, PartialOrd)]
enum DequeDirection {
    Forwards,
    Backwards,
}

impl std::ops::Not for DequeDirection {
    type Output = DequeDirection;
    fn not(self) -> DequeDirection {
        match self {
            DequeDirection::Forwards => DequeDirection::Backwards,
            DequeDirection::Backwards => DequeDirection::Forwards,
        }
    }
}

// An arena that's used to manage `Deque<T>` instances.
pub type DequeArena<T> = ReversibleListArena<T>;

impl<T> Deque<T> {
    /// Creates a new `DequeArena` that will manage deques of this type.
    pub fn new_arena() -> DequeArena<T> {
        ReversibleList::new_arena()
    }

    /// Returns whether this deque is empty.
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.list.is_empty()
    }

    /// Returns an empty deque.
    pub fn empty() -> Deque<T> {
        Deque {
            list: ReversibleList::empty(),
            // A philosophical question for you: is the empty list forwards or backwards?  It
            // doesn't really matter which one we choose here; if we immediately start pushing onto
            // the back, we'll "reverse" the current list before proceeding, but reversing the
            // empty list is a no-op.
            direction: DequeDirection::Forwards,
        }
    }

    /// Returns whether we have already calculated the reversal of this deque.
    pub fn have_reversal(&self, arena: &DequeArena<T>) -> bool {
        self.list.have_reversal(arena)
    }

    fn is_backwards(&self) -> bool {
        matches!(self.direction, DequeDirection::Backwards)
    }

    fn is_forwards(&self) -> bool {
        matches!(self.direction, DequeDirection::Forwards)
    }

    /// Returns an iterator over the contents of this deque, with no guarantee about the ordering of
    /// the elements.  (By not caring about the ordering of the elements, you can call this method
    /// regardless of which direction the deque's elements are currently stored.  And that, in
    /// turn, means that we only need shared access to the arena, and not mutable access to it.)
    pub fn iter_unordered<'a>(&self, arena: &'a DequeArena<T>) -> impl Iterator<Item = &'a T> + 'a {
        self.list.iter(arena)
    }
}

impl<T> Deque<T>
where
    T: Clone,
{
    /// Ensures that this deque has computed its backwards-facing list of elements.
    pub fn ensure_backwards(&mut self, arena: &mut DequeArena<T>) {
        if self.is_backwards() {
            return;
        }
        self.list.reverse(arena);
        self.direction = DequeDirection::Backwards;
    }

    /// Ensures that this deque has computed its forwards-facing list of elements.
    pub fn ensure_forwards(&mut self, arena: &mut DequeArena<T>) {
        if self.is_forwards() {
            return;
        }
        self.list.reverse(arena);
        self.direction = DequeDirection::Forwards;
    }

    /// Pushes a new element onto the front of this deque.
    pub fn push_front(&mut self, arena: &mut DequeArena<T>, element: T) {
        self.ensure_forwards(arena);
        self.list.push_front(arena, element);
    }

    /// Pushes a new element onto the back of this deque.
    pub fn push_back(&mut self, arena: &mut DequeArena<T>, element: T) {
        self.ensure_backwards(arena);
        self.list.push_front(arena, element);
    }

    /// Removes and returns the element from the front of this deque.  If the deque is empty,
    /// returns `None`.
    pub fn pop_front<'a>(&mut self, arena: &'a mut DequeArena<T>) -> Option<&'a T> {
        self.ensure_forwards(arena);
        self.list.pop_front(arena)
    }

    /// Removes and returns the element from the back of this deque.  If the deque is empty,
    /// returns `None`.
    pub fn pop_back<'a>(&mut self, arena: &'a mut DequeArena<T>) -> Option<&'a T> {
        self.ensure_backwards(arena);
        self.list.pop_front(arena)
    }

    /// Returns an iterator over the contents of this deque in a forwards direction.
    pub fn iter<'a>(&self, arena: &'a mut DequeArena<T>) -> impl Iterator<Item = &'a T> + 'a {
        let mut list = self.list;
        if self.is_backwards() {
            list.reverse(arena);
        }
        list.iter(arena)
    }

    /// Returns an iterator over the contents of this deque in a backwards direction.
    pub fn iter_reversed<'a>(
        &self,
        arena: &'a mut DequeArena<T>,
    ) -> impl Iterator<Item = &'a T> + 'a {
        let mut list = self.list;
        if self.is_forwards() {
            list.reverse(arena);
        }
        list.iter(arena)
    }

    /// Ensures that both deques are stored in the same direction.  It doesn't matter _which_
    /// direction, as long as they're the same, so do the minimum amount of work to bring this
    /// about.  (In particular, if we've already calculated the reversal of one of the deques,
    /// reverse that one.)
    fn ensure_same_direction(&mut self, arena: &mut DequeArena<T>, other: &mut Deque<T>) {
        if self.direction == other.direction {
            return;
        }
        if self.list.have_reversal(arena) {
            self.list.reverse(arena);
            self.direction = !self.direction;
        } else {
            other.list.reverse(arena);
            other.direction = !other.direction;
        }
    }
}

impl<T> Deque<T>
where
    T: Clone,
{
    pub fn equals_with<F>(mut self, arena: &mut DequeArena<T>, mut other: Deque<T>, eq: F) -> bool
    where
        F: FnMut(&T, &T) -> bool,
    {
        self.ensure_same_direction(arena, &mut other);
        self.list.equals_with(arena, other.list, eq)
    }

    pub fn cmp_with<F>(
        mut self,
        arena: &mut DequeArena<T>,
        mut other: Deque<T>,
        cmp: F,
    ) -> std::cmp::Ordering
    where
        F: FnMut(&T, &T) -> std::cmp::Ordering,
    {
        // To compare, we need boths deques to specifically be pointing forwards, and not just in
        // the same direction, so that we get the lexicographic comparison correct.
        self.ensure_forwards(arena);
        other.ensure_forwards(arena);
        self.list.cmp_with(arena, other.list, cmp)
    }
}

impl<T> Deque<T>
where
    T: Clone + Eq,
{
    pub fn equals(self, arena: &mut DequeArena<T>, other: Deque<T>) -> bool {
        self.equals_with(arena, other, |a, b| *a == *b)
    }
}

impl<T> Deque<T>
where
    T: Clone + Ord,
{
    pub fn cmp(self, arena: &mut DequeArena<T>, other: Deque<T>) -> std::cmp::Ordering {
        self.cmp_with(arena, other, |a, b| a.cmp(b))
    }
}

impl<T> Deque<T> {
    /// Returns an iterator over the contents of this deque in a forwards direction, assuming that
    /// we have already computed its forwards-facing list of elements via [`ensure_forwards`][].
    /// Panics if we haven't already computed it.
    ///
    /// [`ensure_forwards`]: #method.ensure_forwards
    pub fn iter_reused<'a>(&self, arena: &'a DequeArena<T>) -> impl Iterator<Item = &'a T> + 'a {
        let mut list = self.list;
        if self.is_backwards() {
            list.reverse_reused(arena)
                .expect("Forwards deque hasn't been calculated");
        }
        list.iter(arena)
    }

    /// Returns an iterator over the contents of this deque in a backwards direction, assuming that
    /// we have already computed its backwards-facing list of elements via [`ensure_backwards`][].
    /// Panics if we haven't already computed it.
    ///
    /// [`ensure_backwards`]: #method.ensure_backwards
    pub fn iter_reversed_reused<'a>(
        &self,
        arena: &'a DequeArena<T>,
    ) -> impl Iterator<Item = &'a T> + 'a {
        let mut list = self.list;
        if self.is_forwards() {
            list.reverse_reused(arena)
                .expect("Backwards deque hasn't been calculated");
        }
        list.iter(arena)
    }
}

// Normally we would #[derive] all of these traits, but the auto-derived implementations all
// require that T implement the trait as well.  We don't store any real instances of T inside of
// Deque, so our implementations do _not_ require that.

impl<T> Clone for Deque<T> {
    fn clone(&self) -> Deque<T> {
        Deque {
            list: self.list,
            direction: self.direction,
        }
    }
}

impl<T> Copy for Deque<T> {}