1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
// -*- coding: utf-8 -*-
// ------------------------------------------------------------------------------------------------
// Copyright © 2021, stack-graphs authors.
// Licensed under either of Apache License, Version 2.0, or MIT license, at your option.
// Please see the LICENSE-APACHE or LICENSE-MIT files in this distribution for license details.
// ------------------------------------------------------------------------------------------------
//! Partial paths can be "stitched together" to produce name-binding paths.
//!
//! The "path stitching" algorithm defined in this module is how we take a collection of [partial
//! paths][] and use them to build up name-binding paths. Our conjecture is that by building paths
//! this way, we can precompute a useful amount of work at _index time_ (when we construct the
//! partial paths), to reduce the amount of work that needs to be done at _query time_ (when those
//! partial paths are stitched together into paths).
//!
//! Complicating this story is that for large codebases (especially those with many upstream and
//! downstream dependencies), there is a _very_ large set of partial paths available to us. We
//! want to be able to load those in _lazily_, during the execution of the path-stitching
//! algorithm.
//!
//! The [`Database`][] and [`PathStitcher`][] types provide this functionality. `Database`
//! manages a collection of partial paths that have been loaded into this process from some
//! external data store. `PathStitcher` implements the path-stitching algorithm in _phases_.
//! During each phase, we will process a set of (possibly incomplete) paths, looking in the
//! `Database` for the set of partial paths that are compatible with those paths. It is your
//! responsibility to make sure that the database contains all of possible extensions of the paths
//! that we're going to process in that phase. For the first phase, you already know which
//! paths you're starting the search from, and must make sure that the database starts out
//! containing the possible extensions of those "seed" paths. For subsequent phases, you get to
//! see which paths will be processed in the _next_ phase as part of handling the _current_ phase.
//! This gives you the opporunity to load additional partial paths into the `Database` before
//! allowing the next phase to proceed.
//!
//! [partial paths]: ../partial/index.html
//! [`Database`]: struct.Database.html
//! [`PathStitcher`]: struct.PathStitcher.html
use std::cmp::Ordering;
use std::collections::HashMap;
use std::collections::VecDeque;
#[cfg(feature = "copious-debugging")]
use std::fmt::Display;
use itertools::izip;
use itertools::Itertools;
use crate::arena::Arena;
use crate::arena::Handle;
use crate::arena::HandleSet;
use crate::arena::List;
use crate::arena::ListArena;
use crate::arena::ListCell;
use crate::arena::SupplementalArena;
use crate::cycles::Appendables;
use crate::cycles::AppendingCycleDetector;
use crate::cycles::SimilarPathDetector;
use crate::cycles::SimilarPathStats;
use crate::graph::Degree;
use crate::graph::Edge;
use crate::graph::File;
use crate::graph::Node;
use crate::graph::StackGraph;
use crate::graph::Symbol;
use crate::partial::Cyclicity;
use crate::partial::PartialPath;
use crate::partial::PartialPaths;
use crate::partial::PartialSymbolStack;
use crate::paths::Extend;
use crate::paths::PathResolutionError;
use crate::stats::FrequencyDistribution;
use crate::CancellationError;
use crate::CancellationFlag;
//-------------------------------------------------------------------------------------------------
// Appendable
/// Something that can be appended to a partial path.
pub trait Appendable {
/// Append this appendable to the given path. Resolving jump nodes and renaming unused_variables
/// is part of the responsibility of this method.
fn append_to(
&self,
graph: &StackGraph,
partials: &mut PartialPaths,
path: &mut PartialPath,
) -> Result<(), PathResolutionError>;
/// Return the start node.
fn start_node(&self) -> Handle<Node>;
/// Return the end node.
fn end_node(&self) -> Handle<Node>;
/// Return a Display implementation.
fn display<'a>(
&'a self,
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
) -> Box<dyn std::fmt::Display + 'a>;
}
impl Appendable for Edge {
fn append_to(
&self,
graph: &StackGraph,
partials: &mut PartialPaths,
path: &mut PartialPath,
) -> Result<(), PathResolutionError> {
path.resolve_to_node(graph, partials, self.source)?;
path.append(graph, partials, *self)
}
fn start_node(&self) -> Handle<Node> {
self.source
}
fn end_node(&self) -> Handle<Node> {
self.sink
}
fn display<'a>(
&'a self,
graph: &'a StackGraph,
_partials: &'a mut PartialPaths,
) -> Box<dyn std::fmt::Display + 'a> {
Box::new(format!(
"{} -> {}",
self.source.display(graph),
self.sink.display(graph)
))
}
}
impl Appendable for PartialPath {
fn append_to(
&self,
graph: &StackGraph,
partials: &mut PartialPaths,
path: &mut PartialPath,
) -> Result<(), PathResolutionError> {
path.resolve_to_node(graph, partials, self.start_node)?;
path.ensure_no_overlapping_variables(partials, self);
path.concatenate(graph, partials, self)?;
Ok(())
}
fn start_node(&self) -> Handle<Node> {
self.start_node
}
fn end_node(&self) -> Handle<Node> {
self.end_node
}
fn display<'a>(
&'a self,
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
) -> Box<dyn std::fmt::Display + 'a> {
Box::new(self.display(graph, partials))
}
}
//-------------------------------------------------------------------------------------------------
// ToAppendable
/// A trait to be implemented on types such as [`Database`][] that allow converting handles
/// to appendables.
///
/// It is very similar to the [`std::ops::Index`] trait, but returns a reference instead
/// of a value, such that an efficient identifity implementation is possible, that doesn't
/// require cloning values.
pub trait ToAppendable<H, A>
where
A: Appendable,
{
fn get_appendable<'a>(&'a self, handle: &'a H) -> &'a A;
}
//-------------------------------------------------------------------------------------------------
// Candidates
/// A trait to support finding candidates for partial path extension. The candidates are represented
/// by handles `H`, which are mapped to appendables `A` using the database `Db`. Loading errors are
/// reported as values of the `Err` type.
pub trait ForwardCandidates<H, A, Db, Err>
where
A: Appendable,
Db: ToAppendable<H, A>,
{
/// Load possible forward candidates for the given partial path into this candidates instance.
/// Must be called before [`get_forward_candidates`] to allow lazy-loading implementations.
fn load_forward_candidates(
&mut self,
_path: &PartialPath,
_cancellation_flag: &dyn CancellationFlag,
) -> Result<(), Err> {
Ok(())
}
/// Get forward candidates for extending the given partial path and add them to the provided
/// result instance. If this instance loads data lazily, this only considers previously loaded
/// data.
fn get_forward_candidates<R>(&mut self, path: &PartialPath, result: &mut R)
where
R: std::iter::Extend<H>;
/// Get the number of available candidates that share the given path's end node.
fn get_joining_candidate_degree(&self, path: &PartialPath) -> Degree;
/// Get the graph, partial path arena, and database backing this candidates instance.
fn get_graph_partials_and_db(&mut self) -> (&StackGraph, &mut PartialPaths, &Db);
}
//-------------------------------------------------------------------------------------------------
// FileEdges
/// Acts as a database of the edges in the graph.
pub struct GraphEdgeCandidates<'a> {
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
file: Option<Handle<File>>,
edges: GraphEdges,
}
impl<'a> GraphEdgeCandidates<'a> {
pub fn new(
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
file: Option<Handle<File>>,
) -> Self {
Self {
graph,
partials,
file,
edges: GraphEdges,
}
}
}
impl ForwardCandidates<Edge, Edge, GraphEdges, CancellationError> for GraphEdgeCandidates<'_> {
fn get_forward_candidates<R>(&mut self, path: &PartialPath, result: &mut R)
where
R: std::iter::Extend<Edge>,
{
result.extend(self.graph.outgoing_edges(path.end_node).filter(|e| {
self.file
.map_or(true, |file| self.graph[e.sink].is_in_file(file))
}));
}
fn get_joining_candidate_degree(&self, path: &PartialPath) -> Degree {
self.graph.incoming_edge_degree(path.end_node)
}
fn get_graph_partials_and_db(&mut self) -> (&StackGraph, &mut PartialPaths, &GraphEdges) {
(self.graph, self.partials, &self.edges)
}
}
/// A dummy type to act as the "database" for graph edges. Its [`ToAppendable`] implementation
/// is the identity on edges.
pub struct GraphEdges;
impl ToAppendable<Edge, Edge> for GraphEdges {
fn get_appendable<'a>(&'a self, edge: &'a Edge) -> &'a Edge {
edge
}
}
//-------------------------------------------------------------------------------------------------
// Databases
/// Contains a "database" of partial paths.
///
/// This type is meant to be a lazily loaded "view" into a proper storage layer. During the
/// path-stitching algorithm, we repeatedly try to extend a currently incomplete path with any
/// partial paths that are compatible with it. For large codebases, or projects with a large
/// number of dependencies, it can be prohibitive to load in _all_ of the partial paths up-front.
/// We've written the path-stitching algorithm so that you have a chance to only load in the
/// partial paths that are actually needed, placing them into a `Database` instance as they're
/// needed.
pub struct Database {
pub(crate) partial_paths: Arena<PartialPath>,
pub(crate) local_nodes: HandleSet<Node>,
symbol_stack_keys: ListArena<Handle<Symbol>>,
symbol_stack_key_cache: HashMap<SymbolStackCacheKey, SymbolStackKeyHandle>,
paths_by_start_node: SupplementalArena<Node, Vec<Handle<PartialPath>>>,
root_paths_by_precondition_prefix:
SupplementalArena<SymbolStackKeyCell, Vec<Handle<PartialPath>>>,
root_paths_by_precondition_with_variable:
SupplementalArena<SymbolStackKeyCell, Vec<Handle<PartialPath>>>,
root_paths_by_precondition_without_variable:
SupplementalArena<SymbolStackKeyCell, Vec<Handle<PartialPath>>>,
incoming_paths: SupplementalArena<Node, Degree>,
}
impl Database {
/// Creates a new, empty database.
pub fn new() -> Database {
Database {
partial_paths: Arena::new(),
local_nodes: HandleSet::new(),
symbol_stack_keys: List::new_arena(),
symbol_stack_key_cache: HashMap::new(),
paths_by_start_node: SupplementalArena::new(),
root_paths_by_precondition_prefix: SupplementalArena::new(),
root_paths_by_precondition_with_variable: SupplementalArena::new(),
root_paths_by_precondition_without_variable: SupplementalArena::new(),
incoming_paths: SupplementalArena::new(),
}
}
/// Clear the database. After this, all previous handles into the database are
/// invalid.
#[cfg_attr(not(feature = "storage"), allow(dead_code))]
pub(crate) fn clear(&mut self) {
self.partial_paths.clear();
self.local_nodes.clear();
self.symbol_stack_keys.clear();
self.symbol_stack_key_cache.clear();
self.paths_by_start_node.clear();
self.root_paths_by_precondition_prefix.clear();
self.root_paths_by_precondition_with_variable.clear();
self.root_paths_by_precondition_without_variable.clear();
self.incoming_paths.clear();
}
/// Adds a partial path to this database. We do not deduplicate partial paths in any way; it's
/// your responsibility to only add each partial path once.
pub fn add_partial_path(
&mut self,
graph: &StackGraph,
partials: &mut PartialPaths,
path: PartialPath,
) -> Handle<PartialPath> {
let start_node = path.start_node;
let end_node = path.end_node;
copious_debugging!(
" Add {} path to database {}",
if graph[start_node].is_root() {
"root"
} else {
"node"
},
path.display(graph, partials)
);
let symbol_stack_precondition = path.symbol_stack_precondition;
let handle = self.partial_paths.add(path);
// If the partial path starts at the root node, index it by its symbol stack precondition.
if graph[start_node].is_root() {
// The join node is root, so there's no need to use half-open symbol stacks here, as we
// do for [`PartialPath::concatenate`][].
let mut key = SymbolStackKey::from_partial_symbol_stack(
partials,
self,
symbol_stack_precondition,
);
if !key.is_empty() {
match symbol_stack_precondition.has_variable() {
true => self.root_paths_by_precondition_with_variable[key.back_handle()]
.push(handle),
false => self.root_paths_by_precondition_without_variable[key.back_handle()]
.push(handle),
}
}
while key.pop_back(self).is_some() && !key.is_empty() {
self.root_paths_by_precondition_prefix[key.back_handle()].push(handle);
}
} else {
// Otherwise index it by its source node.
self.paths_by_start_node[start_node].push(handle);
}
self.incoming_paths[end_node] += Degree::One;
handle
}
/// Find all partial paths in this database that start at the given path's end node.
/// If the end node is the root node, returns paths with a symbol stack precondition
/// that are compatible with the path's symbol stack post condition.
pub fn find_candidate_partial_paths<R>(
&mut self,
graph: &StackGraph,
partials: &mut PartialPaths,
path: &PartialPath,
result: &mut R,
) where
R: std::iter::Extend<Handle<PartialPath>>,
{
if graph[path.end_node].is_root() {
// The join node is root, so there's no need to use half-open symbol stacks here, as we
// do for [`PartialPath::concatenate`][].
self.find_candidate_partial_paths_from_root(
graph,
partials,
Some(path.symbol_stack_postcondition),
result,
);
} else {
self.find_candidate_partial_paths_from_node(graph, partials, path.end_node, result);
}
}
/// Find all partial paths in this database that start at the root node, and have a symbol
/// stack precondition that is compatible with a given symbol stack.
#[cfg_attr(not(feature = "copious-debugging"), allow(unused_variables))]
pub fn find_candidate_partial_paths_from_root<R>(
&mut self,
graph: &StackGraph,
partials: &mut PartialPaths,
symbol_stack: Option<PartialSymbolStack>,
result: &mut R,
) where
R: std::iter::Extend<Handle<PartialPath>>,
{
// If the path currently ends at the root node, then we need to look up partial paths whose
// symbol stack precondition is compatible with the path.
match symbol_stack {
Some(symbol_stack) => {
let mut key =
SymbolStackKey::from_partial_symbol_stack(partials, self, symbol_stack);
copious_debugging!(
" Search for symbol stack <{}>",
key.display(graph, self)
);
// paths that have exactly this symbol stack
if let Some(paths) = self
.root_paths_by_precondition_without_variable
.get(key.back_handle())
{
#[cfg(feature = "copious-debugging")]
{
for path in paths {
copious_debugging!(
" Found path with exact stack {}",
self[*path].display(graph, partials)
);
}
}
result.extend(paths.iter().copied());
}
// paths that have an extension of this symbol stack
if symbol_stack.has_variable() {
if let Some(paths) = self
.root_paths_by_precondition_prefix
.get(key.back_handle())
{
#[cfg(feature = "copious-debugging")]
{
for path in paths {
copious_debugging!(
" Found path with smaller stack {}",
self[*path].display(graph, partials)
);
}
}
result.extend(paths.iter().copied());
}
}
loop {
// paths that have a prefix of this symbol stack
if let Some(paths) = self
.root_paths_by_precondition_with_variable
.get(key.back_handle())
{
#[cfg(feature = "copious-debugging")]
{
for path in paths {
copious_debugging!(
" Found path with smaller stack {}",
self[*path].display(graph, partials)
);
}
}
result.extend(paths.iter().copied());
}
if key.pop_back(self).is_none() {
break;
}
}
}
None => {
copious_debugging!(" Search for all root paths");
for (_, paths) in self
.root_paths_by_precondition_with_variable
.iter()
.chain(self.root_paths_by_precondition_without_variable.iter())
{
#[cfg(feature = "copious-debugging")]
{
for path in paths {
copious_debugging!(
" Found path {}",
self[*path].display(graph, partials)
);
}
}
result.extend(paths.iter().copied());
}
}
}
}
/// Find all partial paths in the database that start at the given node. We don't filter the
/// results any further than that, since we have to check each partial path for compatibility
/// as we try to append it to the current incomplete path anyway, and non-root nodes will
/// typically have a small number of outgoing edges.
#[cfg_attr(not(feature = "copious-debugging"), allow(unused_variables))]
pub fn find_candidate_partial_paths_from_node<R>(
&self,
graph: &StackGraph,
partials: &mut PartialPaths,
start_node: Handle<Node>,
result: &mut R,
) where
R: std::iter::Extend<Handle<PartialPath>>,
{
copious_debugging!(" Search for start node {}", start_node.display(graph));
// Return all of the partial paths that start at the requested node.
if let Some(paths) = self.paths_by_start_node.get(start_node) {
#[cfg(feature = "copious-debugging")]
{
for path in paths {
copious_debugging!(
" Found path {}",
self[*path].display(graph, partials)
);
}
}
result.extend(paths.iter().copied());
}
}
/// Returns the number of paths in this database that share the given end node.
pub fn get_incoming_path_degree(&self, end_node: Handle<Node>) -> Degree {
self.incoming_paths[end_node]
}
/// Determines which nodes in the stack graph are “local”, taking into account the partial
/// paths in this database.
///
/// A local node has no partial path that connects it to the root node in either direction.
/// That means that it cannot participate in any paths that leave the file.
///
/// This method is meant to be used at index time, to calculate the set of nodes that are local
/// after having just calculated the set of partial paths for the file.
pub fn find_local_nodes(&mut self) {
// Assume that any node that is the start or end of a partial path is local to this file
// until we see a path connecting the root node to it (in either direction).
self.local_nodes.clear();
for handle in self.iter_partial_paths() {
self.local_nodes.add(self[handle].start_node);
self.local_nodes.add(self[handle].end_node);
}
// The root node and jump-to-scope node are the most obvious non-local nodes.
let mut nonlocal_start_nodes = HandleSet::new();
let mut nonlocal_end_nodes = HandleSet::new();
self.local_nodes.remove(StackGraph::root_node());
nonlocal_start_nodes.add(StackGraph::root_node());
nonlocal_end_nodes.add(StackGraph::root_node());
self.local_nodes.remove(StackGraph::jump_to_node());
nonlocal_start_nodes.add(StackGraph::jump_to_node());
nonlocal_end_nodes.add(StackGraph::jump_to_node());
// Other nodes are non-local if we see any partial path that connects it to another
// non-local node. Repeat until we reach a fixed point.
let mut keep_checking = true;
while keep_checking {
keep_checking = false;
for handle in self.iter_partial_paths() {
let start_node = self[handle].start_node;
let end_node = self[handle].end_node;
// First check forwards paths, where non-localness propagates from the start node
// of each path.
let start_node_is_nonlocal = nonlocal_start_nodes.contains(start_node);
let end_node_is_nonlocal = nonlocal_start_nodes.contains(end_node);
if start_node_is_nonlocal && !end_node_is_nonlocal {
keep_checking = true;
nonlocal_start_nodes.add(end_node);
self.local_nodes.remove(end_node);
}
// Then check reverse paths, where non-localness propagates from the end node of
// each path.
let start_node_is_nonlocal = nonlocal_end_nodes.contains(start_node);
let end_node_is_nonlocal = nonlocal_end_nodes.contains(end_node);
if !start_node_is_nonlocal && end_node_is_nonlocal {
keep_checking = true;
nonlocal_end_nodes.add(start_node);
self.local_nodes.remove(start_node);
}
}
}
}
/// Marks that a stack graph node is local.
///
/// This method is meant to be used at query time. You will have precalculated the set of
/// local nodes for a file at index time; at query time, you will load this information from
/// your storage layer and use this method to update our internal view of which nodes are
/// local.
pub fn mark_local_node(&mut self, node: Handle<Node>) {
self.local_nodes.add(node);
}
/// Returns whether a node is local according to the partial paths in this database. You must
/// have already called [`find_local_nodes`][] or [`mark_local_node`][], depending on whether
/// it is index time or query time.
pub fn node_is_local(&self, node: Handle<Node>) -> bool {
self.local_nodes.contains(node)
}
/// Returns an iterator over all of the handles of all of the partial paths in this database.
/// (Note that because we're only returning _handles_, this iterator does not retain a
/// reference to the `Database`.)
pub fn iter_partial_paths(&self) -> impl Iterator<Item = Handle<PartialPath>> {
self.partial_paths.iter_handles()
}
pub fn ensure_both_directions(&mut self, partials: &mut PartialPaths) {
for path in self.partial_paths.iter_handles() {
self.partial_paths
.get_mut(path)
.ensure_both_directions(partials);
}
}
pub fn ensure_forwards(&mut self, partials: &mut PartialPaths) {
for path in self.partial_paths.iter_handles() {
self.partial_paths.get_mut(path).ensure_forwards(partials);
}
}
}
impl std::ops::Index<Handle<PartialPath>> for Database {
type Output = PartialPath;
#[inline(always)]
fn index(&self, handle: Handle<PartialPath>) -> &PartialPath {
self.partial_paths.get(handle)
}
}
impl ToAppendable<Handle<PartialPath>, PartialPath> for Database {
fn get_appendable<'a>(&'a self, handle: &'a Handle<PartialPath>) -> &'a PartialPath {
&self[*handle]
}
}
pub struct DatabaseCandidates<'a> {
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
database: &'a mut Database,
}
impl<'a> DatabaseCandidates<'a> {
pub fn new(
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
database: &'a mut Database,
) -> Self {
Self {
graph,
partials,
database,
}
}
}
impl ForwardCandidates<Handle<PartialPath>, PartialPath, Database, CancellationError>
for DatabaseCandidates<'_>
{
fn get_forward_candidates<R>(&mut self, path: &PartialPath, result: &mut R)
where
R: std::iter::Extend<Handle<PartialPath>>,
{
self.database
.find_candidate_partial_paths(self.graph, self.partials, path, result);
}
fn get_joining_candidate_degree(&self, path: &PartialPath) -> Degree {
self.database.get_incoming_path_degree(path.end_node)
}
fn get_graph_partials_and_db(&mut self) -> (&StackGraph, &mut PartialPaths, &Database) {
(self.graph, self.partials, self.database)
}
}
/// The key type that we use to find partial paths that start from the root node and have a
/// particular symbol stack as their precondition.
#[derive(Clone, Copy)]
pub struct SymbolStackKey {
// Note: the symbols are stored in reverse order, with the "front" of the List being the "back"
// of the symbol stack. That lets us easily get a handle to the back of the symbol stack, and
// also lets us easily pops items off the back of key, which we need to do to search for all
// prefixes of a particular symbol stack down in `find_candidate_partial_paths_from_root`.
symbols: List<Handle<Symbol>>,
}
#[derive(Clone, Eq, Hash, PartialEq)]
struct SymbolStackCacheKey {
head: Handle<Symbol>,
tail: SymbolStackKeyHandle,
}
type SymbolStackKeyCell = ListCell<Handle<Symbol>>;
type SymbolStackKeyHandle = Handle<SymbolStackKeyCell>;
impl SymbolStackKey {
/// Returns an empty symbol stack key.
fn empty() -> SymbolStackKey {
SymbolStackKey {
symbols: List::empty(),
}
}
fn is_empty(&self) -> bool {
self.symbols.is_empty()
}
/// Pushes a new symbol onto the back of this symbol stack key.
fn push_back(&mut self, db: &mut Database, symbol: Handle<Symbol>) {
let cache_key = SymbolStackCacheKey {
head: symbol,
tail: self.back_handle(),
};
if let Some(handle) = db.symbol_stack_key_cache.get(&cache_key) {
self.symbols = List::from_handle(*handle);
return;
}
// push_front because we store the key's symbols in reverse order.
self.symbols.push_front(&mut db.symbol_stack_keys, symbol);
let handle = self.back_handle();
db.symbol_stack_key_cache.insert(cache_key, handle);
}
/// Pops a symbol from the back of this symbol stack key.
fn pop_back(&mut self, db: &Database) -> Option<Handle<Symbol>> {
// pop_front because we store the key's symbols in reverse order.
self.symbols.pop_front(&db.symbol_stack_keys).copied()
}
/// Extracts a new symbol stack key from a partial symbol stack.
pub fn from_partial_symbol_stack(
partials: &mut PartialPaths,
db: &mut Database,
mut stack: PartialSymbolStack,
) -> SymbolStackKey {
let mut result = SymbolStackKey::empty();
while let Some(symbol) = stack.pop_front(partials) {
result.push_back(db, symbol.symbol);
}
result
}
/// Returns a handle to the back of the symbol stack key.
fn back_handle(self) -> SymbolStackKeyHandle {
// Because the symbols are stored in reverse order, the handle to the "front" of the list
// is a handle to the "back" of the key.
self.symbols.handle()
}
#[cfg(feature = "copious-debugging")]
fn display<'a>(self, graph: &'a StackGraph, db: &'a Database) -> impl Display + 'a {
DisplaySymbolStackKey(self, graph, db)
}
}
#[cfg(feature = "copious-debugging")]
struct DisplaySymbolStackKey<'a>(SymbolStackKey, &'a StackGraph, &'a Database);
#[cfg(feature = "copious-debugging")]
impl<'a> Display for DisplaySymbolStackKey<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
// Use a recursive function to print the contents of the key out in reverse order.
fn display_one(
mut key: SymbolStackKey,
graph: &StackGraph,
db: &Database,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
let last = match key.pop_back(db) {
Some(last) => last,
None => return Ok(()),
};
display_one(key, graph, db, f)?;
last.display(graph).fmt(f)
}
display_one(self.0, self.1, self.2, f)
}
}
//-------------------------------------------------------------------------------------------------
// Stitching partial paths together
/// Implements a phased forward partial path stitching algorithm.
///
/// Our overall goal is to start with a set of _seed_ partial paths, and to repeatedly extend each
/// partial path by concatenating another, compatible partial path onto the end of it. (If there
/// are multiple compatible partial paths, we concatenate each of them separately, resulting in
/// more than one extension for the current path.)
///
/// We perform this processing in _phases_. At the start of each phase, we have a _current set_ of
/// partial paths that need to be processed. As we extend those partial paths, we add the
/// extensions to the set of partial paths to process in the _next_ phase. Phases are processed
/// one at a time, each time you invoke the [`process_next_phase`][] method.
///
/// [`process_next_phase`]: #method.process_next_phase
///
/// After each phase has completed, you can use the [`previous_phase_partial_paths`][] method to
/// retrieve all of the partial paths that were discovered during that phase. That gives you a
/// chance to add to the `Database` all of the other partial paths that we might need to extend
/// those partial paths with before invoking the next phase.
///
/// [`previous_phase_partial_paths`]: #method.previous_phase_partial_paths
///
/// If you don't care about this phasing nonsense, you can instead preload your `Database` with all
/// possible partial paths, and run the forward partial path stitching algorithm all the way to
/// completion, using the [`find_all_complete_partial_paths`][] method.
///
/// [`find_all_complete_partial_paths`]: #method.find_all_complete_partial_paths
pub struct ForwardPartialPathStitcher<H> {
candidates: Vec<H>,
extensions: Vec<(PartialPath, AppendingCycleDetector<H>)>,
queue: VecDeque<(PartialPath, AppendingCycleDetector<H>, bool)>,
// tracks the number of initial paths in the queue because we do not want call
// extend_until on those
initial_paths_in_queue: usize,
// next_iteration is a tuple of queues instead of an queue of tuples so that the path queue
// can be cheaply exposed through the C API as a continuous memory block
next_iteration: (
VecDeque<PartialPath>,
VecDeque<AppendingCycleDetector<H>>,
VecDeque<bool>,
),
appended_paths: Appendables<H>,
similar_path_detector: Option<SimilarPathDetector<PartialPath>>,
check_only_join_nodes: bool,
max_work_per_phase: usize,
initial_paths: usize,
stats: Option<Stats>,
#[cfg(feature = "copious-debugging")]
phase_number: usize,
}
impl<H> ForwardPartialPathStitcher<H> {
/// Creates a new forward partial path stitcher that is "seeded" with a set of initial partial
/// paths. If the sticher is used to find complete paths, it is the responsibility of the caller
/// to ensure precondition variables are eliminated by calling [`PartialPath::eliminate_precondition_stack_variables`][].
pub fn from_partial_paths<I>(
_graph: &StackGraph,
_partials: &mut PartialPaths,
initial_partial_paths: I,
) -> Self
where
I: IntoIterator<Item = PartialPath>,
{
let mut appended_paths = Appendables::new();
let next_iteration: (VecDeque<_>, VecDeque<_>, VecDeque<_>) = initial_partial_paths
.into_iter()
.map(|p| {
let c = AppendingCycleDetector::from(&mut appended_paths, p.clone().into());
(p, c, false)
})
.multiunzip();
let initial_paths = next_iteration.0.len();
Self {
candidates: Vec::new(),
extensions: Vec::new(),
queue: VecDeque::new(),
initial_paths_in_queue: initial_paths,
next_iteration,
appended_paths,
// By default, all paths are checked for similarity
similar_path_detector: Some(SimilarPathDetector::new()),
// By default, all nodes are checked for cycles and (if enabled) similarity
check_only_join_nodes: false,
// By default, there's no artificial bound on the amount of work done per phase
max_work_per_phase: usize::MAX,
initial_paths,
stats: None,
#[cfg(feature = "copious-debugging")]
phase_number: 1,
}
}
/// Sets whether similar path detection should be enabled during path stitching. Paths are similar
/// if start and end node, and pre- and postconditions are the same. The presence of similar paths
/// can lead to exponential blow up during path stitching. Similar path detection is enabled by
/// default.
pub fn set_similar_path_detection(&mut self, detect_similar_paths: bool) {
if !detect_similar_paths {
self.similar_path_detector = None;
} else if self.similar_path_detector.is_none() {
let mut similar_path_detector = SimilarPathDetector::new();
similar_path_detector.set_collect_stats(self.stats.is_some());
self.similar_path_detector = Some(similar_path_detector);
}
}
/// Sets whether all nodes are checked for cycles and (if enabled) similar paths, or only nodes with multiple
/// incoming candidates. Checking only join nodes is **unsafe** unless the database of candidates is stable
/// between all stitching phases. If paths are added to the database from one phase to another, for example if
/// paths are dynamically loaded from storage, setting this to true is incorrect and might lead to non-termination!
pub fn set_check_only_join_nodes(&mut self, check_only_join_nodes: bool) {
self.check_only_join_nodes = check_only_join_nodes;
}
/// Sets the maximum amount of work that can be performed during each phase of the algorithm.
/// By bounding our work this way, you can ensure that it's not possible for our CPU-bound
/// algorithm to starve any worker threads or processes that you might be using. If you don't
/// call this method, then we allow ourselves to process all of the extensions of all of the
/// paths found in the previous phase, with no additional bound.
pub fn set_max_work_per_phase(&mut self, max_work_per_phase: usize) {
self.max_work_per_phase = max_work_per_phase;
}
/// Sets whether to collect statistics during stitching.
pub fn set_collect_stats(&mut self, collect_stats: bool) {
if !collect_stats {
self.stats = None;
} else if self.stats.is_none() {
let mut stats = Stats::default();
stats.initial_paths.record(self.initial_paths);
self.stats = Some(stats);
}
if let Some(similar_path_detector) = &mut self.similar_path_detector {
similar_path_detector.set_collect_stats(collect_stats);
}
}
pub fn into_stats(mut self) -> Stats {
if let (Some(stats), Some(similar_path_detector)) =
(&mut self.stats, self.similar_path_detector)
{
stats.similar_paths_stats = similar_path_detector.stats();
}
self.stats.unwrap_or_default()
}
}
impl<H: Clone> ForwardPartialPathStitcher<H> {
/// Returns an iterator of all of the (possibly incomplete) partial paths that were encountered
/// during the most recent phase of the algorithm.
pub fn previous_phase_partial_paths(&self) -> impl Iterator<Item = &PartialPath> + '_ {
self.next_iteration.0.iter()
}
/// Returns a slice of all of the (possibly incomplete) partial paths that were encountered
/// during the most recent phase of the algorithm.
pub fn previous_phase_partial_paths_slice(&mut self) -> &[PartialPath] {
self.next_iteration.0.make_contiguous();
self.next_iteration.0.as_slices().0
}
/// Returns a mutable slice of all of the (possibly incomplete) partial paths that were
/// encountered during the most recent phase of the algorithm.
pub fn previous_phase_partial_paths_slice_mut(&mut self) -> &mut [PartialPath] {
self.next_iteration.0.make_contiguous();
self.next_iteration.0.as_mut_slices().0
}
/// Attempts to extend one partial path as part of the algorithm. When calling this function,
/// you are responsible for ensuring that `db` already contains all of the possible appendables
/// that we might want to extend `partial_path` with.
fn extend<A, Db, C, Err>(
&mut self,
candidates: &mut C,
partial_path: &PartialPath,
cycle_detector: AppendingCycleDetector<H>,
has_split: bool,
) -> usize
where
A: Appendable,
Db: ToAppendable<H, A>,
C: ForwardCandidates<H, A, Db, Err>,
{
let check_cycle = !self.check_only_join_nodes
|| partial_path.start_node == partial_path.end_node
|| candidates.get_joining_candidate_degree(partial_path) == Degree::Multiple;
let (graph, partials, db) = candidates.get_graph_partials_and_db();
copious_debugging!(" Extend {}", partial_path.display(graph, partials));
if check_cycle {
// Check is path is cyclic, in which case we do not extend it. We only do this if the start and end nodes are the same,
// or the current end node has multiple incoming edges. If neither of these hold, the path cannot end in a cycle.
let has_precondition_variables = partial_path.symbol_stack_precondition.has_variable()
|| partial_path.scope_stack_precondition.has_variable();
let cycles = cycle_detector
.is_cyclic(graph, partials, db, &mut self.appended_paths)
.expect("cyclic test failed when stitching partial paths");
let cyclic = match has_precondition_variables {
// If the precondition has no variables, we allow cycles that strengthen the
// precondition, because we know they cannot strengthen the precondition of
// the overall path.
false => !cycles
.into_iter()
.all(|c| c == Cyclicity::StrengthensPrecondition),
// If the precondition has variables, do not allow any cycles, not even those
// that strengthen the precondition. This is more strict than necessary. Better
// might be to disallow precondition strengthening cycles only if they would
// strengthen the overall path precondition.
true => !cycles.is_empty(),
};
if cyclic {
copious_debugging!(" is discontinued: cyclic");
return 0;
}
}
// find candidates to append
self.candidates.clear();
candidates.get_forward_candidates(partial_path, &mut self.candidates);
let (graph, partials, db) = candidates.get_graph_partials_and_db();
// try to extend path with candidates
let candidate_count = self.candidates.len();
self.extensions.clear();
self.extensions.reserve(candidate_count);
for candidate in &self.candidates {
let appendable = db.get_appendable(candidate);
copious_debugging!(" with {}", appendable.display(graph, partials));
let mut new_partial_path = partial_path.clone();
let mut new_cycle_detector = cycle_detector.clone();
// If there are errors concatenating these partial paths, or resolving the resulting
// partial path, just skip the extension — it's not a fatal error.
#[cfg_attr(not(feature = "copious-debugging"), allow(unused_variables))]
{
if let Err(err) = appendable.append_to(graph, partials, &mut new_partial_path) {
copious_debugging!(" is invalid: {:?}", err);
continue;
}
}
new_cycle_detector.append(&mut self.appended_paths, candidate.clone());
copious_debugging!(" is {}", new_partial_path.display(graph, partials));
self.extensions.push((new_partial_path, new_cycle_detector));
}
let extension_count = self.extensions.len();
let new_has_split = has_split || self.extensions.len() > 1;
self.next_iteration.0.reserve(extension_count);
self.next_iteration.1.reserve(extension_count);
self.next_iteration.2.reserve(extension_count);
for (new_partial_path, new_cycle_detector) in self.extensions.drain(..) {
let check_similar_path = new_has_split
&& (!self.check_only_join_nodes
|| candidates.get_joining_candidate_degree(&new_partial_path)
== Degree::Multiple);
let (graph, partials, _) = candidates.get_graph_partials_and_db();
if check_similar_path {
if let Some(similar_path_detector) = &mut self.similar_path_detector {
if similar_path_detector.add_path(
graph,
partials,
&new_partial_path,
|ps, left, right| {
if !left.equals(ps, right) {
None
} else {
if left.shadows(ps, right) {
Some(Ordering::Less)
} else if right.shadows(ps, left) {
Some(Ordering::Greater)
} else {
Some(Ordering::Equal)
}
}
},
) {
copious_debugging!(
" extension {}",
new_partial_path.display(graph, partials)
);
copious_debugging!(" is rejected: too many similar");
continue;
}
}
}
self.next_iteration.0.push(new_partial_path);
self.next_iteration.1.push(new_cycle_detector);
self.next_iteration.2.push(new_has_split);
}
if let Some(stats) = &mut self.stats {
let (graph, _, _) = candidates.get_graph_partials_and_db();
let end_node = &graph[partial_path.end_node];
if end_node.is_root() {
stats.candidates_per_root_path.record(candidate_count);
stats.extensions_per_root_path.record(extension_count);
stats.root_visits += 1;
} else {
stats.candidates_per_node_path.record(candidate_count);
stats.extensions_per_node_path.record(extension_count);
stats.node_visits.record(end_node.id());
}
if extension_count == 0 {
stats.terminal_path_lengh.record(partial_path.edges.len());
}
}
candidate_count
}
/// Returns whether the algorithm has completed.
pub fn is_complete(&self) -> bool {
self.queue.is_empty() && self.next_iteration.0.is_empty()
}
/// Runs the next phase of the algorithm. We will have built up a set of incomplete partial
/// paths during the _previous_ phase. Before calling this function, you must ensure that `db`
/// contains all of the possible appendables that we might want to extend any of those
/// candidate partial paths with.
///
/// After this method returns, you can use [`previous_phase_partial_paths`][] to retrieve a
/// list of the (possibly incomplete) partial paths that were encountered during this phase.
///
/// The `extend_while` closure is used to control whether the extended paths are further extended
/// or not. It is not called on the initial paths.
///
/// [`previous_phase_partial_paths`]: #method.previous_phase_partial_paths
pub fn process_next_phase<A, Db, C, E, Err>(&mut self, candidates: &mut C, extend_while: E)
where
A: Appendable,
Db: ToAppendable<H, A>,
C: ForwardCandidates<H, A, Db, Err>,
E: Fn(&StackGraph, &mut PartialPaths, &PartialPath) -> bool,
{
copious_debugging!("==> Start phase {}", self.phase_number);
self.queue.extend(izip!(
self.next_iteration.0.drain(..),
self.next_iteration.1.drain(..),
self.next_iteration.2.drain(..),
));
if let Some(stats) = &mut self.stats {
stats.queued_paths_per_phase.record(self.queue.len());
}
let mut work_performed = 0;
while let Some((partial_path, cycle_detector, has_split)) = self.queue.pop_front() {
let (graph, partials, _) = candidates.get_graph_partials_and_db();
copious_debugging!(
"--> Candidate partial path {}",
partial_path.display(graph, partials)
);
if self.initial_paths_in_queue > 0 {
self.initial_paths_in_queue -= 1;
} else if !extend_while(graph, partials, &partial_path) {
copious_debugging!(
" Do not extend {}",
partial_path.display(graph, partials)
);
continue;
}
work_performed += self.extend(candidates, &partial_path, cycle_detector, has_split);
if work_performed >= self.max_work_per_phase {
break;
}
}
if let Some(stats) = &mut self.stats {
stats.processed_paths_per_phase.record(work_performed);
}
#[cfg(feature = "copious-debugging")]
{
if let Some(similar_path_detector) = &self.similar_path_detector {
copious_debugging!(
" Max similar path bucket size: {}",
similar_path_detector.max_bucket_size()
);
}
copious_debugging!("==> End phase {}", self.phase_number);
self.phase_number += 1;
}
}
}
impl ForwardPartialPathStitcher<Edge> {
/// Finds a minimal set of partial paths in a file, calling the `visit` closure for each one.
///
/// This function ensures that the set of visited partial paths
/// (a) is minimal, no path can be constructed by stitching other paths in the set, and
/// (b) covers all complete paths, from references to definitions, when used for path stitching
///
/// This function will not return until all reachable partial paths have been processed, so
/// your database must already contain all partial paths that might be needed. If you have a
/// very large stack graph stored in some other storage system, and want more control over
/// lazily loading only the necessary pieces, then you should code up your own loop that calls
/// [`process_next_phase`][] manually.
///
/// Caveat: Edges between nodes of different files are not used. Hence the returned set of partial
/// paths will not cover paths going through those edges.
///
/// [`process_next_phase`]: #method.process_next_phase
pub fn find_minimal_partial_path_set_in_file<F>(
graph: &StackGraph,
partials: &mut PartialPaths,
file: Handle<File>,
config: StitcherConfig,
cancellation_flag: &dyn CancellationFlag,
mut visit: F,
) -> Result<Stats, CancellationError>
where
F: FnMut(&StackGraph, &mut PartialPaths, &PartialPath),
{
fn as_complete_as_necessary(graph: &StackGraph, path: &PartialPath) -> bool {
path.starts_at_endpoint(graph)
&& (path.ends_at_endpoint(graph) || path.ends_in_jump(graph))
}
let initial_paths = graph
.nodes_for_file(file)
.chain(std::iter::once(StackGraph::root_node()))
.filter(|node| graph[*node].is_endpoint())
.map(|node| PartialPath::from_node(graph, partials, node))
.collect::<Vec<_>>();
let mut stitcher =
ForwardPartialPathStitcher::from_partial_paths(graph, partials, initial_paths);
config.apply(&mut stitcher);
stitcher.set_check_only_join_nodes(true);
let mut accepted_path_length = FrequencyDistribution::default();
while !stitcher.is_complete() {
cancellation_flag.check("finding complete partial paths")?;
stitcher.process_next_phase(
&mut GraphEdgeCandidates::new(graph, partials, Some(file)),
|g, _ps, p| !as_complete_as_necessary(g, p),
);
for path in stitcher.previous_phase_partial_paths() {
if as_complete_as_necessary(graph, path) {
accepted_path_length.record(path.edges.len());
visit(graph, partials, path);
}
}
}
Ok(Stats {
accepted_path_length,
..stitcher.into_stats()
})
}
}
impl<H: Clone> ForwardPartialPathStitcher<H> {
/// Finds all complete partial paths that are reachable from a set of starting nodes,
/// building them up by stitching together partial paths from this database, and calling
/// the `visit` closure on each one.
///
/// This function will not return until all reachable partial paths have been processed, so
/// your database must already contain all partial paths that might be needed. If you have a
/// very large stack graph stored in some other storage system, and want more control over
/// lazily loading only the necessary pieces, then you should code up your own loop that calls
/// [`process_next_phase`][] manually.
///
/// [`process_next_phase`]: #method.process_next_phase
pub fn find_all_complete_partial_paths<I, F, A, Db, C, Err>(
candidates: &mut C,
starting_nodes: I,
config: StitcherConfig,
cancellation_flag: &dyn CancellationFlag,
mut visit: F,
) -> Result<Stats, Err>
where
I: IntoIterator<Item = Handle<Node>>,
A: Appendable,
Db: ToAppendable<H, A>,
C: ForwardCandidates<H, A, Db, Err>,
F: FnMut(&StackGraph, &mut PartialPaths, &PartialPath),
Err: std::convert::From<CancellationError>,
{
let (graph, partials, _) = candidates.get_graph_partials_and_db();
let initial_paths = starting_nodes
.into_iter()
.filter(|n| graph[*n].is_reference())
.map(|n| {
let mut p = PartialPath::from_node(graph, partials, n);
p.eliminate_precondition_stack_variables(partials);
p
})
.collect::<Vec<_>>();
let mut stitcher =
ForwardPartialPathStitcher::from_partial_paths(graph, partials, initial_paths);
config.apply(&mut stitcher);
stitcher.set_check_only_join_nodes(true);
let mut accepted_path_length = FrequencyDistribution::default();
while !stitcher.is_complete() {
cancellation_flag.check("finding complete partial paths")?;
for path in stitcher.previous_phase_partial_paths() {
candidates.load_forward_candidates(path, cancellation_flag)?;
}
stitcher.process_next_phase(candidates, |_, _, _| true);
let (graph, partials, _) = candidates.get_graph_partials_and_db();
for path in stitcher.previous_phase_partial_paths() {
if path.is_complete(graph) {
accepted_path_length.record(path.edges.len());
visit(graph, partials, path);
}
}
}
Ok(Stats {
accepted_path_length,
..stitcher.into_stats()
})
}
}
#[derive(Clone, Debug, Default)]
pub struct Stats {
/// The distribution of the number of initial paths
pub initial_paths: FrequencyDistribution<usize>,
/// The distribution of the number of queued paths per stitching phase
pub queued_paths_per_phase: FrequencyDistribution<usize>,
/// The distribution of the number of processed paths per stitching phase
pub processed_paths_per_phase: FrequencyDistribution<usize>,
/// The distribution of the length of accepted paths
pub accepted_path_length: FrequencyDistribution<usize>,
/// The distribution of the maximal length of paths (when they cannot be extended more)
pub terminal_path_lengh: FrequencyDistribution<usize>,
/// The distribution of the number of candidates for paths ending in a regular node
pub candidates_per_node_path: FrequencyDistribution<usize>,
/// The distribution of the number of candidates for paths ending in the root node
pub candidates_per_root_path: FrequencyDistribution<usize>,
/// The distribution of the number of extensions (accepted candidates) for paths ending in a regular node
pub extensions_per_node_path: FrequencyDistribution<usize>,
/// The distribution of the number of extensions (accepted candidates) for paths ending in the root node
pub extensions_per_root_path: FrequencyDistribution<usize>,
/// The number of times the root node is visited
pub root_visits: usize,
/// The distribution of the number of times a regular node is visited
pub node_visits: FrequencyDistribution<crate::graph::NodeID>,
/// The distribution of the number of similar paths between node pairs.
pub similar_paths_stats: SimilarPathStats,
}
impl std::ops::AddAssign<Self> for Stats {
fn add_assign(&mut self, rhs: Self) {
self.initial_paths += rhs.initial_paths;
self.queued_paths_per_phase += rhs.queued_paths_per_phase;
self.processed_paths_per_phase += rhs.processed_paths_per_phase;
self.accepted_path_length += rhs.accepted_path_length;
self.terminal_path_lengh += rhs.terminal_path_lengh;
self.candidates_per_node_path += rhs.candidates_per_node_path;
self.candidates_per_root_path += rhs.candidates_per_root_path;
self.extensions_per_node_path += rhs.extensions_per_node_path;
self.extensions_per_root_path += rhs.extensions_per_root_path;
self.root_visits += rhs.root_visits;
self.node_visits += rhs.node_visits;
self.similar_paths_stats += rhs.similar_paths_stats;
}
}
impl std::ops::AddAssign<&Self> for Stats {
fn add_assign(&mut self, rhs: &Self) {
self.initial_paths += &rhs.initial_paths;
self.processed_paths_per_phase += &rhs.processed_paths_per_phase;
self.accepted_path_length += &rhs.accepted_path_length;
self.terminal_path_lengh += &rhs.terminal_path_lengh;
self.candidates_per_node_path += &rhs.candidates_per_node_path;
self.candidates_per_root_path += &rhs.candidates_per_root_path;
self.extensions_per_node_path += &rhs.extensions_per_node_path;
self.extensions_per_root_path += &rhs.extensions_per_root_path;
self.root_visits += rhs.root_visits;
self.node_visits += &rhs.node_visits;
self.similar_paths_stats += &rhs.similar_paths_stats;
}
}
/// Configuration for partial path stitchers.
#[derive(Clone, Copy, Debug)]
pub struct StitcherConfig {
/// Enables similar path detection during path stitching.
detect_similar_paths: bool,
/// Collect statistics about path stitching.
collect_stats: bool,
}
impl StitcherConfig {
pub fn detect_similar_paths(&self) -> bool {
self.detect_similar_paths
}
pub fn with_detect_similar_paths(mut self, detect_similar_paths: bool) -> Self {
self.detect_similar_paths = detect_similar_paths;
self
}
pub fn collect_stats(&self) -> bool {
self.collect_stats
}
pub fn with_collect_stats(mut self, collect_stats: bool) -> Self {
self.collect_stats = collect_stats;
self
}
}
impl StitcherConfig {
fn apply<H>(&self, stitcher: &mut ForwardPartialPathStitcher<H>) {
stitcher.set_similar_path_detection(self.detect_similar_paths);
stitcher.set_collect_stats(self.collect_stats);
}
}
impl Default for StitcherConfig {
fn default() -> Self {
Self {
detect_similar_paths: true,
collect_stats: false,
}
}
}