1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
// -*- coding: utf-8 -*-
// ------------------------------------------------------------------------------------------------
// Copyright © 2021, stack-graphs authors.
// Licensed under either of Apache License, Version 2.0, or MIT license, at your option.
// Please see the LICENSE-APACHE or LICENSE-MIT files in this distribution for license details.
// ------------------------------------------------------------------------------------------------
//! Partial paths are "snippets" of paths that we can precalculate for each file that we analyze.
//!
//! Stack graphs are _incremental_, since we can produce a subgraph for each file without having
//! to look at the contents of any other file in the repo, or in any upstream or downstream
//! dependencies.
//!
//! This is great, because it means that when we receive a new commit for a repository, we only
//! have to examine, and generate new stack subgraphs for, the files that are changed as part of
//! that commit.
//!
//! Having done that, one possible way to find name binding paths would be to load in all of the
//! subgraphs for the files that belong to the current commit, union them together into the
//! combined graph for that commit, and run the [path-finding algorithm][] on that combined graph.
//! However, we think that this will require too much computation at query time.
//!
//! [path-finding algorithm]: ../paths/index.html
//!
//! Instead, we want to precompute parts of the path-finding algorithm, by calculating _partial
//! paths_ for each file. Because stack graphs have limited places where a path can cross from one
//! file into another, we can calculate all of the possible partial paths that reach those
//! “import/export” points.
//!
//! At query time, we can then load in the _partial paths_ for each file, instead of the files'
//! full stack graph structure. We can efficiently [concatenate][] partial paths together,
//! producing the original "full" path that represents a name binding.
//!
//! [concatenate]: struct.PartialPath.html#method.concatenate
use std::convert::TryFrom;
use std::fmt::Display;
use std::num::NonZeroU32;
use controlled_option::ControlledOption;
use controlled_option::Niche;
use enumset::EnumSetType;
use smallvec::SmallVec;
use crate::arena::Deque;
use crate::arena::DequeArena;
use crate::arena::Handle;
use crate::graph::Edge;
use crate::graph::Node;
use crate::graph::NodeID;
use crate::graph::StackGraph;
use crate::graph::Symbol;
use crate::paths::PathResolutionError;
use crate::utils::cmp_option;
use crate::utils::equals_option;
//-------------------------------------------------------------------------------------------------
// Displaying stuff
/// This trait only exists because:
///
/// - we need `Display` implementations that dereference arena handles from our `StackGraph` and
/// `PartialPaths` bags o' crap,
/// - many of our arena-managed types can handles to _other_ arena-managed data, which we need to
/// recursively display as part of displaying the "outer" instance, and
/// - in particular, we sometimes need `&mut` access to the `PartialPaths` arenas.
///
/// The borrow checker is not very happy with us having all of these constraints at the same time —
/// in particular, the last one.
///
/// This trait gets around the problem by breaking up the display operation into two steps:
///
/// - First, each data instance has a chance to "prepare" itself with `&mut` access to whatever
/// arenas it needs. (Anything containing a `Deque`, for instance, uses this step to ensure
/// that our copy of the deque is pointed in the right direction, since reversing requires
/// `&mut` access to the arena.)
///
/// - Once everything has been prepared, we return a value that implements `Display`, and
/// contains _non-mutable_ references to the arena. Because our arena references are
/// non-mutable, we don't run into any problems with the borrow checker while recursively
/// displaying the contents of the data instance.
trait DisplayWithPartialPaths {
fn prepare(&mut self, _graph: &StackGraph, _partials: &mut PartialPaths) {}
fn display_with(
&self,
graph: &StackGraph,
partials: &PartialPaths,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result;
}
/// Prepares and returns a `Display` implementation for a type `D` that implements
/// `DisplayWithPartialPaths`. We only require `&mut` access to the `PartialPath` arenas while
/// creating the `Display` instance; the `Display` instance itself will only retain shared access
/// to the arenas.
fn display_with<'a, D>(
mut value: D,
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
) -> impl Display + 'a
where
D: DisplayWithPartialPaths + 'a,
{
value.prepare(graph, partials);
DisplayWithPartialPathsWrapper {
value,
graph,
partials,
}
}
/// Returns a `Display` implementation that you can use inside of your `display_with` method to
/// display any recursive fields. This assumes that the recursive fields have already been
/// prepared.
fn display_prepared<'a, D>(
value: D,
graph: &'a StackGraph,
partials: &'a PartialPaths,
) -> impl Display + 'a
where
D: DisplayWithPartialPaths + 'a,
{
DisplayWithPartialPathsWrapper {
value,
graph,
partials,
}
}
#[doc(hidden)]
struct DisplayWithPartialPathsWrapper<'a, D> {
value: D,
graph: &'a StackGraph,
partials: &'a PartialPaths,
}
impl<'a, D> Display for DisplayWithPartialPathsWrapper<'a, D>
where
D: DisplayWithPartialPaths,
{
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
self.value.display_with(self.graph, self.partials, f)
}
}
//-------------------------------------------------------------------------------------------------
// Symbol stack variables
/// Represents an unknown list of scoped symbols.
#[repr(transparent)]
#[derive(Clone, Copy, Debug, Eq, Hash, Niche, Ord, PartialEq, PartialOrd)]
pub struct SymbolStackVariable(#[niche] NonZeroU32);
impl SymbolStackVariable {
pub fn new(variable: u32) -> Option<SymbolStackVariable> {
NonZeroU32::new(variable).map(SymbolStackVariable)
}
/// Creates a new symbol stack variable. This constructor is used when creating a new, empty
/// partial path, since there aren't any other variables that we need to be fresher than.
pub(crate) fn initial() -> SymbolStackVariable {
SymbolStackVariable(unsafe { NonZeroU32::new_unchecked(1) })
}
/// Applies an offset to this variable.
///
/// When concatenating partial paths, we have to ensure that the left- and right-hand sides
/// have non-overlapping sets of variables. To do this, we find the maximum value of any
/// variable on the left-hand side, and add this “offset” to the values of all of the variables
/// on the right-hand side.
pub fn with_offset(self, symbol_variable_offset: u32) -> SymbolStackVariable {
let offset_value = self.0.get() + symbol_variable_offset;
SymbolStackVariable(unsafe { NonZeroU32::new_unchecked(offset_value) })
}
pub(crate) fn as_u32(self) -> u32 {
self.0.get()
}
fn as_usize(self) -> usize {
self.0.get() as usize
}
}
impl Display for SymbolStackVariable {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "%{}", self.0.get())
}
}
impl From<NonZeroU32> for SymbolStackVariable {
fn from(value: NonZeroU32) -> SymbolStackVariable {
SymbolStackVariable(value)
}
}
impl Into<u32> for SymbolStackVariable {
fn into(self) -> u32 {
self.0.get()
}
}
impl TryFrom<u32> for SymbolStackVariable {
type Error = ();
fn try_from(value: u32) -> Result<SymbolStackVariable, ()> {
let value = NonZeroU32::new(value).ok_or(())?;
Ok(SymbolStackVariable(value))
}
}
//-------------------------------------------------------------------------------------------------
// Scope stack variables
/// Represents an unknown list of exported scopes.
#[repr(transparent)]
#[derive(Clone, Copy, Debug, Eq, Hash, Niche, Ord, PartialEq, PartialOrd)]
pub struct ScopeStackVariable(#[niche] NonZeroU32);
impl ScopeStackVariable {
pub fn new(variable: u32) -> Option<ScopeStackVariable> {
NonZeroU32::new(variable).map(ScopeStackVariable)
}
/// Creates a new scope stack variable. This constructor is used when creating a new, empty
/// partial path, since there aren't any other variables that we need to be fresher than.
fn initial() -> ScopeStackVariable {
ScopeStackVariable(unsafe { NonZeroU32::new_unchecked(1) })
}
/// Creates a new scope stack variable that is fresher than all other variables in a partial
/// path. (You must calculate the maximum variable number already in use.)
fn fresher_than(max_used: u32) -> ScopeStackVariable {
ScopeStackVariable(unsafe { NonZeroU32::new_unchecked(max_used + 1) })
}
/// Applies an offset to this variable.
///
/// When concatenating partial paths, we have to ensure that the left- and right-hand sides
/// have non-overlapping sets of variables. To do this, we find the maximum value of any
/// variable on the left-hand side, and add this “offset” to the values of all of the variables
/// on the right-hand side.
pub fn with_offset(self, scope_variable_offset: u32) -> ScopeStackVariable {
let offset_value = self.0.get() + scope_variable_offset;
ScopeStackVariable(unsafe { NonZeroU32::new_unchecked(offset_value) })
}
pub(crate) fn as_u32(self) -> u32 {
self.0.get()
}
fn as_usize(self) -> usize {
self.0.get() as usize
}
}
impl Display for ScopeStackVariable {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "${}", self.0.get())
}
}
impl From<NonZeroU32> for ScopeStackVariable {
fn from(value: NonZeroU32) -> ScopeStackVariable {
ScopeStackVariable(value)
}
}
impl Into<u32> for ScopeStackVariable {
fn into(self) -> u32 {
self.0.get()
}
}
impl TryFrom<u32> for ScopeStackVariable {
type Error = ();
fn try_from(value: u32) -> Result<ScopeStackVariable, ()> {
let value = NonZeroU32::new(value).ok_or(())?;
Ok(ScopeStackVariable(value))
}
}
//-------------------------------------------------------------------------------------------------
// Partial symbol stacks
/// A symbol with an unknown, but possibly empty, list of exported scopes attached to it.
#[repr(C)]
#[derive(Clone, Copy)]
pub struct PartialScopedSymbol {
pub symbol: Handle<Symbol>,
// Note that not having an attached scope list is _different_ than having an empty attached
// scope list.
pub scopes: ControlledOption<PartialScopeStack>,
}
impl PartialScopedSymbol {
/// Applies an offset to this scoped symbol.
///
/// When concatenating partial paths, we have to ensure that the left- and right-hand sides
/// have non-overlapping sets of variables. To do this, we find the maximum value of any
/// variable on the left-hand side, and add this “offset” to the values of all of the variables
/// on the right-hand side.
pub fn with_offset(mut self, scope_variable_offset: u32) -> PartialScopedSymbol {
let scopes = self
.scopes
.into_option()
.map(|stack| stack.with_offset(scope_variable_offset));
self.scopes = ControlledOption::from_option(scopes);
self
}
/// Matches this precondition symbol against another, unifying its contents with an existing
/// set of bindings.
pub fn unify(
&mut self,
partials: &mut PartialPaths,
rhs: PartialScopedSymbol,
scope_bindings: &mut PartialScopeStackBindings,
) -> Result<(), PathResolutionError> {
if self.symbol != rhs.symbol {
return Err(PathResolutionError::SymbolStackUnsatisfied);
}
match (self.scopes.into_option(), rhs.scopes.into_option()) {
(Some(lhs), Some(rhs)) => {
let unified = lhs.unify(partials, rhs, scope_bindings)?;
self.scopes = ControlledOption::some(unified);
}
(None, None) => {}
_ => return Err(PathResolutionError::SymbolStackUnsatisfied),
}
Ok(())
}
/// Returns whether two partial scoped symbols "match". The symbols must be identical, and any
/// attached scopes must also match.
pub fn matches(self, partials: &mut PartialPaths, postcondition: PartialScopedSymbol) -> bool {
if self.symbol != postcondition.symbol {
return false;
}
// If one side has an attached scope but the other doesn't, then the scoped symbols don't
// match.
if self.scopes.is_none() != postcondition.scopes.is_none() {
return false;
}
// Otherwise, if both sides have an attached scope, they have to be compatible.
if let Some(precondition_scopes) = self.scopes.into_option() {
if let Some(postcondition_scopes) = postcondition.scopes.into_option() {
return precondition_scopes.matches(partials, postcondition_scopes);
}
}
true
}
/// Applies a set of bindings to this partial scoped symbol, producing a new scoped symbol.
pub fn apply_partial_bindings(
mut self,
partials: &mut PartialPaths,
scope_bindings: &PartialScopeStackBindings,
) -> Result<PartialScopedSymbol, PathResolutionError> {
let scopes = match self.scopes.into_option() {
Some(scopes) => Some(scopes.apply_partial_bindings(partials, scope_bindings)?),
None => None,
};
self.scopes = scopes.into();
Ok(self)
}
pub fn equals(&self, partials: &mut PartialPaths, other: &PartialScopedSymbol) -> bool {
self.symbol == other.symbol
&& equals_option(
self.scopes.into_option(),
other.scopes.into_option(),
|a, b| a.equals(partials, b),
)
}
pub fn cmp(
&self,
graph: &StackGraph,
partials: &mut PartialPaths,
other: &PartialScopedSymbol,
) -> std::cmp::Ordering {
std::cmp::Ordering::Equal
.then_with(|| graph[self.symbol].cmp(&graph[other.symbol]))
.then_with(|| {
cmp_option(
self.scopes.into_option(),
other.scopes.into_option(),
|a, b| a.cmp(partials, b),
)
})
}
pub fn display<'a>(
self,
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
) -> impl Display + 'a {
display_with(self, graph, partials)
}
}
impl DisplayWithPartialPaths for PartialScopedSymbol {
fn prepare(&mut self, graph: &StackGraph, partials: &mut PartialPaths) {
if let Some(mut scopes) = self.scopes.into_option() {
scopes.prepare(graph, partials);
self.scopes = scopes.into();
}
}
fn display_with(
&self,
graph: &StackGraph,
partials: &PartialPaths,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
if let Some(scopes) = self.scopes.into_option() {
write!(
f,
"{}/({})",
self.symbol.display(graph),
display_prepared(scopes, graph, partials)
)
} else {
write!(f, "{}", self.symbol.display(graph))
}
}
}
/// A pattern that might match against a symbol stack. Consists of a (possibly empty) list of
/// partial scoped symbols, along with an optional symbol stack variable.
#[repr(C)]
#[derive(Clone, Copy, Niche)]
pub struct PartialSymbolStack {
#[niche]
symbols: Deque<PartialScopedSymbol>,
length: u32,
variable: ControlledOption<SymbolStackVariable>,
}
impl PartialSymbolStack {
/// Returns whether this partial symbol stack can match the empty symbol stack.
#[inline(always)]
pub fn can_match_empty(&self) -> bool {
self.symbols.is_empty()
}
/// Returns whether this partial symbol stack can _only_ match the empty symbol stack.
#[inline(always)]
pub fn can_only_match_empty(&self) -> bool {
self.symbols.is_empty() && self.variable.is_none()
}
/// Returns whether this partial symbol stack contains any symbols.
#[inline(always)]
pub fn contains_symbols(&self) -> bool {
!self.symbols.is_empty()
}
/// Returns whether this partial symbol stack has a symbol stack variable.
#[inline(always)]
pub fn has_variable(&self) -> bool {
self.variable.is_some()
}
#[inline(always)]
pub fn len(&self) -> usize {
self.length as usize
}
/// Returns an empty partial symbol stack.
pub fn empty() -> PartialSymbolStack {
PartialSymbolStack {
symbols: Deque::empty(),
length: 0,
variable: ControlledOption::none(),
}
}
/// Returns a partial symbol stack containing only a symbol stack variable.
pub fn from_variable(variable: SymbolStackVariable) -> PartialSymbolStack {
PartialSymbolStack {
symbols: Deque::empty(),
length: 0,
variable: ControlledOption::some(variable),
}
}
/// Returns whether this partial symbol stack is iterable in both directions without needing
/// mutable access to the arena.
pub fn have_reversal(&self, partials: &PartialPaths) -> bool {
self.symbols.have_reversal(&partials.partial_symbol_stacks)
}
/// Applies an offset to this partial symbol stack.
///
/// When concatenating partial paths, we have to ensure that the left- and right-hand sides
/// have non-overlapping sets of variables. To do this, we find the maximum value of any
/// variable on the left-hand side, and add this “offset” to the values of all of the variables
/// on the right-hand side.
pub fn with_offset(
mut self,
partials: &mut PartialPaths,
symbol_variable_offset: u32,
scope_variable_offset: u32,
) -> PartialSymbolStack {
let mut result = match self.variable.into_option() {
Some(variable) => Self::from_variable(variable.with_offset(symbol_variable_offset)),
None => Self::empty(),
};
while let Some(symbol) = self.pop_front(partials) {
result.push_back(partials, symbol.with_offset(scope_variable_offset));
}
result
}
fn prepend(&mut self, partials: &mut PartialPaths, mut head: Deque<PartialScopedSymbol>) {
while let Some(head) = head.pop_back(&mut partials.partial_symbol_stacks).copied() {
self.push_front(partials, head);
}
}
/// Pushes a new [`PartialScopedSymbol`][] onto the front of this partial symbol stack.
pub fn push_front(&mut self, partials: &mut PartialPaths, symbol: PartialScopedSymbol) {
self.length += 1;
self.symbols
.push_front(&mut partials.partial_symbol_stacks, symbol);
}
/// Pushes a new [`PartialScopedSymbol`][] onto the back of this partial symbol stack.
pub fn push_back(&mut self, partials: &mut PartialPaths, symbol: PartialScopedSymbol) {
self.length += 1;
self.symbols
.push_back(&mut partials.partial_symbol_stacks, symbol);
}
/// Removes and returns the [`PartialScopedSymbol`][] at the front of this partial symbol
/// stack. If the stack is empty, returns `None`.
pub fn pop_front(&mut self, partials: &mut PartialPaths) -> Option<PartialScopedSymbol> {
let result = self
.symbols
.pop_front(&mut partials.partial_symbol_stacks)
.copied();
if result.is_some() {
self.length -= 1;
}
result
}
/// Removes and returns the [`PartialScopedSymbol`][] at the back of this partial symbol stack.
/// If the stack is empty, returns `None`.
pub fn pop_back(&mut self, partials: &mut PartialPaths) -> Option<PartialScopedSymbol> {
let result = self
.symbols
.pop_back(&mut partials.partial_symbol_stacks)
.copied();
if result.is_some() {
self.length -= 1;
}
result
}
pub fn display<'a>(
self,
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
) -> impl Display + 'a {
display_with(self, graph, partials)
}
/// Returns whether two partial symbol stacks "match". They must be the same length, and each
/// respective partial scoped symbol must match.
pub fn matches(mut self, partials: &mut PartialPaths, mut other: PartialSymbolStack) -> bool {
while let Some(self_element) = self.pop_front(partials) {
if let Some(other_element) = other.pop_front(partials) {
if !self_element.matches(partials, other_element) {
return false;
}
} else {
// Stacks aren't the same length.
return false;
}
}
if other.contains_symbols() {
// Stacks aren't the same length.
return false;
}
self.variable.into_option() == other.variable.into_option()
}
/// Applies a set of bindings to this partial symbol stack, producing a new partial symbol
/// stack.
pub fn apply_partial_bindings(
mut self,
partials: &mut PartialPaths,
symbol_bindings: &PartialSymbolStackBindings,
scope_bindings: &PartialScopeStackBindings,
) -> Result<PartialSymbolStack, PathResolutionError> {
// If this partial symbol stack ends in a variable, see if we have a binding for it. If
// so, substitute that binding in. If not, leave the variable as-is.
let mut result = match self.variable.into_option() {
Some(variable) => match symbol_bindings.get(variable) {
Some(bound) => bound,
None => PartialSymbolStack::from_variable(variable),
},
None => PartialSymbolStack::empty(),
};
// Then prepend all of the scoped symbols that appear at the beginning of this stack,
// applying the bindings to any attached scopes as well.
while let Some(partial_symbol) = self.pop_back(partials) {
let partial_symbol = partial_symbol.apply_partial_bindings(partials, scope_bindings)?;
result.push_front(partials, partial_symbol);
}
Ok(result)
}
/// Given two partial symbol stacks, returns the largest possible partial symbol stack such that
/// any symbol stack that satisfies the result also satisfies both inputs. This takes into
/// account any existing variable assignments, and updates those variable assignments with
/// whatever constraints are necessary to produce a correct result.
///
/// Note that this operation is commutative. (Concatenating partial paths, defined in
/// [`PartialPath::concatenate`][], is not.)
pub fn unify(
self,
partials: &mut PartialPaths,
mut rhs: PartialSymbolStack,
symbol_bindings: &mut PartialSymbolStackBindings,
scope_bindings: &mut PartialScopeStackBindings,
) -> Result<PartialSymbolStack, PathResolutionError> {
let mut lhs = self;
// First, look at the shortest common prefix of lhs and rhs, and verify that they match.
let mut head = Deque::empty();
while lhs.contains_symbols() && rhs.contains_symbols() {
let mut lhs_front = lhs.pop_front(partials).unwrap();
let rhs_front = rhs.pop_front(partials).unwrap();
lhs_front.unify(partials, rhs_front, scope_bindings)?;
head.push_back(&mut partials.partial_symbol_stacks, lhs_front);
}
// Now at most one stack still has symbols. Zero, one, or both of them have variables.
// Let's do a case analysis on all of those possibilities.
// CASE 1:
// Both lhs and rhs have no more symbols. The answer is always yes, and any variables that
// are present get bound. (If both sides have variables, then one variable gets bound to
// the other, since both lhs and rhs will match _any other symbol stack_ at this point. If
// only one side has a variable, then the variable gets bound to the empty stack.)
//
// lhs rhs
// ============ ============
// () () => yes either
// () () $2 => yes rhs, $2 => ()
// () $1 () => yes lhs, $1 => ()
// () $1 () $2 => yes lhs, $2 => $1
if !lhs.contains_symbols() && !rhs.contains_symbols() {
match (lhs.variable.into_option(), rhs.variable.into_option()) {
(None, None) => {
lhs.prepend(partials, head);
return Ok(lhs);
}
(None, Some(var)) => {
symbol_bindings.add(
partials,
var,
PartialSymbolStack::empty(),
scope_bindings,
)?;
rhs.prepend(partials, head);
return Ok(rhs);
}
(Some(var), None) => {
symbol_bindings.add(
partials,
var,
PartialSymbolStack::empty(),
scope_bindings,
)?;
lhs.prepend(partials, head);
return Ok(lhs);
}
(Some(lhs_var), Some(rhs_var)) => {
symbol_bindings.add(
partials,
rhs_var,
PartialSymbolStack::from_variable(lhs_var),
scope_bindings,
)?;
lhs.prepend(partials, head);
return Ok(lhs);
}
}
}
// CASE 2:
// One of the stacks contains symbols and the other doesn't, and the “empty” stack doesn't
// have a variable. Since there's no variable on the empty side to capture the remaining
// content on the non-empty side, the answer is always no.
//
// lhs rhs
// ============ ============
// () (stuff) => NO
// () (stuff) $2 => NO
// (stuff) () => NO
// (stuff) $1 () => NO
if !lhs.contains_symbols() && lhs.variable.is_none() {
return Err(PathResolutionError::SymbolStackUnsatisfied);
}
if !rhs.contains_symbols() && rhs.variable.is_none() {
return Err(PathResolutionError::SymbolStackUnsatisfied);
}
// CASE 3:
// One of the stacks contains symbols and the other doesn't, and the “empty” stack _does_
// have a variable. If both sides have the same variable, the answer is NO. Otherwise,
// the answer is YES, and the “empty” side's variable needs to capture the entirety of the
// non-empty side.
//
// lhs rhs
// ============ ============
// (...) $1 (...) $1 => no
// () $1 (stuff) => yes rhs, $1 => rhs
// () $1 (stuff) $2 => yes rhs, $1 => rhs
// (stuff) () $2 => yes lhs, $2 => lhs
// (stuff) $1 () $2 => yes lhs, $2 => lhs
match (lhs.variable.into_option(), rhs.variable.into_option()) {
(Some(v1), Some(v2)) if v1 == v2 => {
return Err(PathResolutionError::ScopeStackUnsatisfied)
}
_ => {}
}
if lhs.contains_symbols() {
let rhs_variable = rhs.variable.into_option().unwrap();
symbol_bindings.add(partials, rhs_variable, lhs, scope_bindings)?;
lhs.prepend(partials, head);
return Ok(lhs);
}
if rhs.contains_symbols() {
let lhs_variable = lhs.variable.into_option().unwrap();
symbol_bindings.add(partials, lhs_variable, rhs, scope_bindings)?;
rhs.prepend(partials, head);
return Ok(rhs);
}
unreachable!();
}
pub fn equals(mut self, partials: &mut PartialPaths, mut other: PartialSymbolStack) -> bool {
while let Some(self_symbol) = self.pop_front(partials) {
if let Some(other_symbol) = other.pop_front(partials) {
if !self_symbol.equals(partials, &other_symbol) {
return false;
}
} else {
return false;
}
}
if !other.symbols.is_empty() {
return false;
}
equals_option(
self.variable.into_option(),
other.variable.into_option(),
|a, b| a == b,
)
}
pub fn cmp(
mut self,
graph: &StackGraph,
partials: &mut PartialPaths,
mut other: PartialSymbolStack,
) -> std::cmp::Ordering {
use std::cmp::Ordering;
while let Some(self_symbol) = self.pop_front(partials) {
if let Some(other_symbol) = other.pop_front(partials) {
match self_symbol.cmp(graph, partials, &other_symbol) {
Ordering::Equal => continue,
result @ _ => return result,
}
} else {
return Ordering::Greater;
}
}
if !other.symbols.is_empty() {
return Ordering::Less;
}
cmp_option(
self.variable.into_option(),
other.variable.into_option(),
|a, b| a.cmp(&b),
)
}
/// Returns an iterator over the contents of this partial symbol stack.
pub fn iter<'a>(
&self,
partials: &'a mut PartialPaths,
) -> impl Iterator<Item = PartialScopedSymbol> + 'a {
self.symbols
.iter(&mut partials.partial_symbol_stacks)
.copied()
}
/// Returns an iterator over the contents of this partial symbol stack, with no guarantee
/// about the ordering of the elements.
pub fn iter_unordered<'a>(
&self,
partials: &'a PartialPaths,
) -> impl Iterator<Item = PartialScopedSymbol> + 'a {
self.symbols
.iter_unordered(&partials.partial_symbol_stacks)
.copied()
}
pub fn variable(&self) -> Option<SymbolStackVariable> {
self.variable.clone().into_option()
}
fn ensure_both_directions(&mut self, partials: &mut PartialPaths) {
self.symbols
.ensure_backwards(&mut partials.partial_symbol_stacks);
self.symbols
.ensure_forwards(&mut partials.partial_symbol_stacks);
}
fn ensure_forwards(&mut self, partials: &mut PartialPaths) {
self.symbols
.ensure_forwards(&mut partials.partial_symbol_stacks);
}
/// Returns the largest value of any symbol stack variable in this partial symbol stack.
pub fn largest_symbol_stack_variable(&self) -> u32 {
self.variable
.into_option()
.map(SymbolStackVariable::as_u32)
.unwrap_or(0)
}
/// Returns the largest value of any scope stack variable in this partial symbol stack.
pub fn largest_scope_stack_variable(&self, partials: &PartialPaths) -> u32 {
// We don't have to check the postconditions, because it's not valid for a postcondition to
// refer to a variable that doesn't exist in the precondition.
self.iter_unordered(partials)
.filter_map(|symbol| symbol.scopes.into_option())
.filter_map(|scopes| scopes.variable.into_option())
.map(ScopeStackVariable::as_u32)
.max()
.unwrap_or(0)
}
}
impl DisplayWithPartialPaths for PartialSymbolStack {
fn prepare(&mut self, graph: &StackGraph, partials: &mut PartialPaths) {
// Ensure that our deque is pointed forwards while we still have a mutable reference to the
// arena.
self.symbols
.ensure_forwards(&mut partials.partial_symbol_stacks);
// And then prepare each symbol in the stack.
let mut symbols = self.symbols;
while let Some(mut symbol) = symbols
.pop_front(&mut partials.partial_symbol_stacks)
.copied()
{
symbol.prepare(graph, partials);
}
}
fn display_with(
&self,
graph: &StackGraph,
partials: &PartialPaths,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
for symbol in self.symbols.iter_reused(&partials.partial_symbol_stacks) {
symbol.display_with(graph, partials, f)?;
}
if let Some(variable) = self.variable.into_option() {
if self.symbols.is_empty() {
write!(f, "{}", variable)?;
} else {
write!(f, ",{}", variable)?;
}
}
Ok(())
}
}
//-------------------------------------------------------------------------------------------------
// Partial scope stacks
/// A pattern that might match against a scope stack. Consists of a (possibly empty) list of
/// exported scopes, along with an optional scope stack variable.
#[repr(C)]
#[derive(Clone, Copy, Niche)]
pub struct PartialScopeStack {
#[niche]
scopes: Deque<Handle<Node>>,
length: u32,
variable: ControlledOption<ScopeStackVariable>,
}
impl PartialScopeStack {
/// Returns whether this partial scope stack can match the empty scope stack.
#[inline(always)]
pub fn can_match_empty(&self) -> bool {
self.scopes.is_empty()
}
/// Returns whether this partial scope stack can _only_ match the empty scope stack.
#[inline(always)]
pub fn can_only_match_empty(&self) -> bool {
self.scopes.is_empty() && self.variable.is_none()
}
/// Returns whether this partial scope stack contains any scopes.
#[inline(always)]
pub fn contains_scopes(&self) -> bool {
!self.scopes.is_empty()
}
/// Returns whether this partial scope stack has a scope stack variable.
#[inline(always)]
pub fn has_variable(&self) -> bool {
self.variable.is_some()
}
#[inline(always)]
pub fn len(&self) -> usize {
self.length as usize
}
/// Returns an empty partial scope stack.
pub fn empty() -> PartialScopeStack {
PartialScopeStack {
scopes: Deque::empty(),
length: 0,
variable: ControlledOption::none(),
}
}
/// Returns a partial scope stack containing only a scope stack variable.
pub fn from_variable(variable: ScopeStackVariable) -> PartialScopeStack {
PartialScopeStack {
scopes: Deque::empty(),
length: 0,
variable: ControlledOption::some(variable),
}
}
/// Returns whether this partial scope stack is iterable in both directions without needing
/// mutable access to the arena.
pub fn have_reversal(&self, partials: &PartialPaths) -> bool {
self.scopes.have_reversal(&partials.partial_scope_stacks)
}
/// Applies an offset to this partial scope stack.
///
/// When concatenating partial paths, we have to ensure that the left- and right-hand sides
/// have non-overlapping sets of variables. To do this, we find the maximum value of any
/// variable on the left-hand side, and add this “offset” to the values of all of the variables
/// on the right-hand side.
pub fn with_offset(mut self, scope_variable_offset: u32) -> PartialScopeStack {
match self.variable.into_option() {
Some(variable) => {
self.variable = ControlledOption::some(variable.with_offset(scope_variable_offset));
}
None => {}
};
self
}
/// Returns whether two partial scope stacks match exactly the same set of scope stacks.
pub fn matches(mut self, partials: &mut PartialPaths, mut other: PartialScopeStack) -> bool {
while let Some(self_element) = self.pop_front(partials) {
if let Some(other_element) = other.pop_front(partials) {
if self_element != other_element {
return false;
}
} else {
// Stacks aren't the same length.
return false;
}
}
if other.contains_scopes() {
// Stacks aren't the same length.
return false;
}
self.variable.into_option() == other.variable.into_option()
}
/// Applies a set of partial scope stack bindings to this partial scope stack, producing a new
/// partial scope stack.
pub fn apply_partial_bindings(
mut self,
partials: &mut PartialPaths,
scope_bindings: &PartialScopeStackBindings,
) -> Result<PartialScopeStack, PathResolutionError> {
// If this partial scope stack ends in a variable, see if we have a binding for it. If so,
// substitute that binding in. If not, leave the variable as-is.
let mut result = match self.variable.into_option() {
Some(variable) => match scope_bindings.get(variable) {
Some(bound) => bound,
None => PartialScopeStack::from_variable(variable),
},
None => PartialScopeStack::empty(),
};
// Then prepend all of the scopes that appear at the beginning of this stack.
while let Some(scope) = self.pop_back(partials) {
result.push_front(partials, scope);
}
Ok(result)
}
/// Given two partial scope stacks, returns the largest possible partial scope stack such that
/// any scope stack that satisfies the result also satisfies both inputs. This takes into
/// account any existing variable assignments, and updates those variable assignments with
/// whatever constraints are necessary to produce a correct result.
///
/// Note that this operation is commutative. (Concatenating partial paths, defined in
/// [`PartialPath::concatenate`][], is not.)
pub fn unify(
self,
partials: &mut PartialPaths,
mut rhs: PartialScopeStack,
bindings: &mut PartialScopeStackBindings,
) -> Result<PartialScopeStack, PathResolutionError> {
let mut lhs = self;
let original_rhs = rhs;
// First, look at the shortest common prefix of lhs and rhs, and verify that they match.
while lhs.contains_scopes() && rhs.contains_scopes() {
let lhs_front = lhs.pop_front(partials).unwrap();
let rhs_front = rhs.pop_front(partials).unwrap();
if lhs_front != rhs_front {
return Err(PathResolutionError::ScopeStackUnsatisfied);
}
}
// Now at most one stack still has scopes. Zero, one, or both of them have variables.
// Let's do a case analysis on all of those possibilities.
// CASE 1:
// Both lhs and rhs have no more scopes. The answer is always yes, and any variables that
// are present get bound. (If both sides have variables, then one variable gets bound to
// the other, since both lhs and rhs will match _any other scope stack_ at this point. If
// only one side has a variable, then the variable gets bound to the empty stack.)
//
// lhs rhs
// ============ ============
// () () => yes either
// () () $2 => yes rhs, $2 => ()
// () $1 () => yes lhs, $1 => ()
// () $1 () $2 => yes lhs, $2 => $1
if !lhs.contains_scopes() && !rhs.contains_scopes() {
match (lhs.variable.into_option(), rhs.variable.into_option()) {
(None, None) => return Ok(self),
(None, Some(var)) => {
bindings.add(partials, var, PartialScopeStack::empty())?;
return Ok(original_rhs);
}
(Some(var), None) => {
bindings.add(partials, var, PartialScopeStack::empty())?;
return Ok(self);
}
(Some(lhs_var), Some(rhs_var)) => {
bindings.add(partials, rhs_var, PartialScopeStack::from_variable(lhs_var))?;
return Ok(self);
}
}
}
// CASE 2:
// One of the stacks contains scopes and the other doesn't, and the “empty” stack doesn't
// have a variable. Since there's no variable on the empty side to capture the remaining
// content on the non-empty side, the answer is always no.
//
// lhs rhs
// ============ ============
// () (stuff) => NO
// () (stuff) $2 => NO
// (stuff) () => NO
// (stuff) $1 () => NO
if !lhs.contains_scopes() && lhs.variable.is_none() {
return Err(PathResolutionError::ScopeStackUnsatisfied);
}
if !rhs.contains_scopes() && rhs.variable.is_none() {
return Err(PathResolutionError::ScopeStackUnsatisfied);
}
// CASE 3:
// One of the stacks contains scopes and the other doesn't, and the “empty” stack _does_
// have a variable. If both sides have the same variable, the answer is NO. Otherwise,
// the answer is YES, and the “empty” side's variable needs to capture the entirety of the
// non-empty side.
//
// lhs rhs
// ============ ============
// (...) $1 (...) $1 => no
// () $1 (stuff) => yes rhs, $1 => rhs
// () $1 (stuff) $2 => yes rhs, $1 => rhs
// (stuff) () $2 => yes lhs, $2 => lhs
// (stuff) $1 () $2 => yes lhs, $2 => lhs
match (lhs.variable.into_option(), rhs.variable.into_option()) {
(Some(v1), Some(v2)) if v1 == v2 => {
return Err(PathResolutionError::ScopeStackUnsatisfied)
}
_ => {}
}
if lhs.contains_scopes() {
let rhs_variable = rhs.variable.into_option().unwrap();
bindings.add(partials, rhs_variable, lhs)?;
return Ok(self);
}
if rhs.contains_scopes() {
let lhs_variable = lhs.variable.into_option().unwrap();
bindings.add(partials, lhs_variable, rhs)?;
return Ok(original_rhs);
}
unreachable!();
}
/// Pushes a new [`Node`][] onto the front of this partial scope stack. The node must be an
/// _exported scope node_.
///
/// [`Node`]: ../graph/enum.Node.html
pub fn push_front(&mut self, partials: &mut PartialPaths, node: Handle<Node>) {
self.length += 1;
self.scopes
.push_front(&mut partials.partial_scope_stacks, node);
}
/// Pushes a new [`Node`][] onto the back of this partial scope stack. The node must be an
/// _exported scope node_.
///
/// [`Node`]: ../graph/enum.Node.html
pub fn push_back(&mut self, partials: &mut PartialPaths, node: Handle<Node>) {
self.length += 1;
self.scopes
.push_back(&mut partials.partial_scope_stacks, node);
}
/// Removes and returns the [`Node`][] at the front of this partial scope stack. If the stack
/// does not contain any exported scope nodes, returns `None`.
pub fn pop_front(&mut self, partials: &mut PartialPaths) -> Option<Handle<Node>> {
let result = self
.scopes
.pop_front(&mut partials.partial_scope_stacks)
.copied();
if result.is_some() {
self.length -= 1;
}
result
}
/// Removes and returns the [`Node`][] at the back of this partial scope stack. If the stack
/// does not contain any exported scope nodes, returns `None`.
pub fn pop_back(&mut self, partials: &mut PartialPaths) -> Option<Handle<Node>> {
let result = self
.scopes
.pop_back(&mut partials.partial_scope_stacks)
.copied();
if result.is_some() {
self.length -= 1;
}
result
}
/// Returns the scope stack variable at the end of this partial scope stack. If the stack does
/// not contain a scope stack variable, returns `None`.
pub fn variable(&self) -> Option<ScopeStackVariable> {
self.variable.into_option()
}
pub fn equals(self, partials: &mut PartialPaths, other: PartialScopeStack) -> bool {
self.scopes
.equals_with(&mut partials.partial_scope_stacks, other.scopes, |a, b| {
*a == *b
})
&& equals_option(
self.variable.into_option(),
other.variable.into_option(),
|a, b| a == b,
)
}
pub fn cmp(self, partials: &mut PartialPaths, other: PartialScopeStack) -> std::cmp::Ordering {
std::cmp::Ordering::Equal
.then_with(|| {
self.scopes
.cmp_with(&mut partials.partial_scope_stacks, other.scopes, |a, b| {
a.cmp(b)
})
})
.then_with(|| {
cmp_option(
self.variable.into_option(),
other.variable.into_option(),
|a, b| a.cmp(&b),
)
})
}
/// Returns an iterator over the scopes in this partial scope stack.
pub fn iter_scopes<'a>(
&self,
partials: &'a mut PartialPaths,
) -> impl Iterator<Item = Handle<Node>> + 'a {
self.scopes
.iter(&mut partials.partial_scope_stacks)
.copied()
}
/// Returns an iterator over the contents of this partial scope stack, with no guarantee
/// about the ordering of the elements.
pub fn iter_unordered<'a>(
&self,
partials: &'a PartialPaths,
) -> impl Iterator<Item = Handle<Node>> + 'a {
self.scopes
.iter_unordered(&partials.partial_scope_stacks)
.copied()
}
pub fn display<'a>(
self,
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
) -> impl Display + 'a {
display_with(self, graph, partials)
}
fn ensure_both_directions(&mut self, partials: &mut PartialPaths) {
self.scopes
.ensure_backwards(&mut partials.partial_scope_stacks);
self.scopes
.ensure_forwards(&mut partials.partial_scope_stacks);
}
fn ensure_forwards(&mut self, partials: &mut PartialPaths) {
self.scopes
.ensure_forwards(&mut partials.partial_scope_stacks);
}
/// Returns the largest value of any scope stack variable in this partial scope stack.
pub fn largest_scope_stack_variable(&self) -> u32 {
self.variable
.into_option()
.map(ScopeStackVariable::as_u32)
.unwrap_or(0)
}
}
impl DisplayWithPartialPaths for PartialScopeStack {
fn prepare(&mut self, _graph: &StackGraph, partials: &mut PartialPaths) {
self.scopes
.ensure_forwards(&mut partials.partial_scope_stacks);
}
fn display_with(
&self,
graph: &StackGraph,
partials: &PartialPaths,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
let mut first = true;
for scope in self.scopes.iter_reused(&partials.partial_scope_stacks) {
if first {
first = false;
} else {
write!(f, ",")?;
}
write!(f, "{:#}", scope.display(graph))?;
}
if let Some(variable) = self.variable.into_option() {
if self.scopes.is_empty() {
write!(f, "{}", variable)?;
} else {
write!(f, ",{}", variable)?;
}
}
Ok(())
}
}
//-------------------------------------------------------------------------------------------------
// Partial symbol bindings
pub struct PartialSymbolStackBindings {
bindings: SmallVec<[Option<PartialSymbolStack>; 4]>,
}
impl PartialSymbolStackBindings {
/// Creates a new, empty set of partial symbol stack bindings.
pub fn new() -> PartialSymbolStackBindings {
PartialSymbolStackBindings {
bindings: SmallVec::new(),
}
}
/// Returns the partial symbol stack that a particular symbol stack variable matched. Returns an
/// error if that variable didn't match anything.
pub fn get(&self, variable: SymbolStackVariable) -> Option<PartialSymbolStack> {
let index = variable.as_usize();
if self.bindings.len() < index {
return None;
}
self.bindings[index - 1]
}
/// Adds a new binding from a symbol stack variable to the partial symbol stack that it
/// matched. Returns an error if you try to bind a particular variable more than once.
pub fn add(
&mut self,
partials: &mut PartialPaths,
variable: SymbolStackVariable,
mut symbols: PartialSymbolStack,
scope_bindings: &mut PartialScopeStackBindings,
) -> Result<(), PathResolutionError> {
let index = variable.as_usize();
if self.bindings.len() < index {
self.bindings.resize_with(index, || None);
}
if let Some(old_binding) = self.bindings[index - 1] {
symbols = symbols.unify(partials, old_binding, self, scope_bindings)?;
}
self.bindings[index - 1] = Some(symbols);
Ok(())
}
pub fn display<'a>(
&'a mut self,
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
) -> impl Display + 'a {
display_with(self, graph, partials)
}
}
impl<'a> DisplayWithPartialPaths for &'a mut PartialSymbolStackBindings {
fn prepare(&mut self, graph: &StackGraph, partials: &mut PartialPaths) {
for binding in &mut self.bindings {
if let Some(binding) = binding.as_mut() {
binding.prepare(graph, partials);
}
}
}
fn display_with(
&self,
graph: &StackGraph,
partials: &PartialPaths,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
write!(f, "{{")?;
let mut first = true;
for (idx, binding) in self.bindings.iter().enumerate() {
if let Some(binding) = binding.as_ref() {
if first {
first = false;
} else {
write!(f, ", ")?;
}
write!(
f,
"%{} => <{}>",
idx + 1,
display_prepared(*binding, graph, partials)
)?;
}
}
write!(f, "}}")
}
}
//-------------------------------------------------------------------------------------------------
// Partial scope bindings
pub struct PartialScopeStackBindings {
bindings: SmallVec<[Option<PartialScopeStack>; 4]>,
}
impl PartialScopeStackBindings {
/// Creates a new, empty set of partial scope stack bindings.
pub fn new() -> PartialScopeStackBindings {
PartialScopeStackBindings {
bindings: SmallVec::new(),
}
}
/// Returns the partial scope stack that a particular scope stack variable matched. Returns an error
/// if that variable didn't match anything.
pub fn get(&self, variable: ScopeStackVariable) -> Option<PartialScopeStack> {
let index = variable.as_usize();
if self.bindings.len() < index {
return None;
}
self.bindings[index - 1]
}
/// Adds a new binding from a scope stack variable to the partial scope stack that it matched. Returns
/// an error if you try to bind a particular variable more than once.
pub fn add(
&mut self,
partials: &mut PartialPaths,
variable: ScopeStackVariable,
mut scopes: PartialScopeStack,
) -> Result<(), PathResolutionError> {
let index = variable.as_usize();
if self.bindings.len() < index {
self.bindings.resize_with(index, || None);
}
if let Some(old_binding) = self.bindings[index - 1] {
scopes = scopes.unify(partials, old_binding, self)?;
}
self.bindings[index - 1] = Some(scopes);
Ok(())
}
pub fn display<'a>(
&'a mut self,
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
) -> impl Display + 'a {
display_with(self, graph, partials)
}
}
impl<'a> DisplayWithPartialPaths for &'a mut PartialScopeStackBindings {
fn prepare(&mut self, graph: &StackGraph, partials: &mut PartialPaths) {
for binding in &mut self.bindings {
if let Some(binding) = binding.as_mut() {
binding.prepare(graph, partials);
}
}
}
fn display_with(
&self,
graph: &StackGraph,
partials: &PartialPaths,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
write!(f, "{{")?;
let mut first = true;
for (idx, binding) in self.bindings.iter().enumerate() {
if let Some(binding) = binding.as_ref() {
if first {
first = false;
} else {
write!(f, ", ")?;
}
write!(
f,
"${} => ({})",
idx + 1,
display_prepared(*binding, graph, partials)
)?;
}
}
write!(f, "}}")
}
}
//-------------------------------------------------------------------------------------------------
// Edge lists
#[repr(C)]
#[derive(Clone, Copy, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct PartialPathEdge {
pub source_node_id: NodeID,
pub precedence: i32,
}
impl PartialPathEdge {
/// Returns whether one edge shadows another. Note that shadowing is not commutative — if path
/// A shadows path B, the reverse is not true.
pub fn shadows(self, other: PartialPathEdge) -> bool {
self.source_node_id == other.source_node_id && self.precedence > other.precedence
}
pub fn display<'a>(
self,
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
) -> impl Display + 'a {
display_with(self, graph, partials)
}
}
impl DisplayWithPartialPaths for PartialPathEdge {
fn display_with(
&self,
graph: &StackGraph,
_partials: &PartialPaths,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match graph.node_for_id(self.source_node_id) {
Some(node) => write!(f, "{:#}", node.display(graph))?,
None => write!(f, "[missing]")?,
}
if self.precedence != 0 {
write!(f, "({})", self.precedence)?;
}
Ok(())
}
}
/// The edges in a path keep track of precedence information so that we can correctly handle
/// shadowed definitions.
#[repr(C)]
#[derive(Clone, Copy, Niche)]
pub struct PartialPathEdgeList {
#[niche]
edges: Deque<PartialPathEdge>,
length: u32,
}
impl PartialPathEdgeList {
/// Returns whether this edge list is empty.
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.edges.is_empty()
}
#[inline(always)]
pub fn len(&self) -> usize {
self.length as usize
}
/// Returns whether this edge list is iterable in both directions without needing mutable
/// access to the arena.
pub fn have_reversal(&self, partials: &PartialPaths) -> bool {
self.edges.have_reversal(&partials.partial_path_edges)
}
/// Returns an empty edge list.
pub fn empty() -> PartialPathEdgeList {
PartialPathEdgeList {
edges: Deque::empty(),
length: 0,
}
}
/// Pushes a new edge onto the front of this edge list.
pub fn push_front(&mut self, partials: &mut PartialPaths, edge: PartialPathEdge) {
self.length += 1;
self.edges
.push_front(&mut partials.partial_path_edges, edge);
}
/// Pushes a new edge onto the back of this edge list.
pub fn push_back(&mut self, partials: &mut PartialPaths, edge: PartialPathEdge) {
self.length += 1;
self.edges.push_back(&mut partials.partial_path_edges, edge);
}
/// Removes and returns the edge at the front of this edge list. If the list is empty, returns
/// `None`.
pub fn pop_front(&mut self, partials: &mut PartialPaths) -> Option<PartialPathEdge> {
let result = self.edges.pop_front(&mut partials.partial_path_edges);
if result.is_some() {
self.length -= 1;
}
result.copied()
}
/// Removes and returns the edge at the back of this edge list. If the list is empty, returns
/// `None`.
pub fn pop_back(&mut self, partials: &mut PartialPaths) -> Option<PartialPathEdge> {
let result = self.edges.pop_back(&mut partials.partial_path_edges);
if result.is_some() {
self.length -= 1;
}
result.copied()
}
pub fn display<'a>(
self,
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
) -> impl Display + 'a {
display_with(self, graph, partials)
}
/// Returns whether one edge list shadows another. Note that shadowing is not commutative — if
/// path A shadows path B, the reverse is not true.
pub fn shadows(mut self, partials: &mut PartialPaths, mut other: PartialPathEdgeList) -> bool {
while let Some(self_edge) = self.pop_front(partials) {
if let Some(other_edge) = other.pop_front(partials) {
if self_edge.source_node_id != other_edge.source_node_id {
return false;
} else if self_edge.shadows(other_edge) {
return true;
}
} else {
return false;
}
}
false
}
pub fn equals(mut self, partials: &mut PartialPaths, mut other: PartialPathEdgeList) -> bool {
while let Some(self_edge) = self.pop_front(partials) {
if let Some(other_edge) = other.pop_front(partials) {
if self_edge != other_edge {
return false;
}
} else {
return false;
}
}
other.edges.is_empty()
}
pub fn cmp(
mut self,
partials: &mut PartialPaths,
mut other: PartialPathEdgeList,
) -> std::cmp::Ordering {
use std::cmp::Ordering;
while let Some(self_edge) = self.pop_front(partials) {
if let Some(other_edge) = other.pop_front(partials) {
match self_edge.cmp(&other_edge) {
Ordering::Equal => continue,
result @ _ => return result,
}
} else {
return Ordering::Greater;
}
}
if other.edges.is_empty() {
Ordering::Equal
} else {
Ordering::Less
}
}
/// Returns an iterator over the contents of this edge list.
pub fn iter<'a>(
&self,
partials: &'a mut PartialPaths,
) -> impl Iterator<Item = PartialPathEdge> + 'a {
self.edges.iter(&mut partials.partial_path_edges).copied()
}
/// Returns an iterator over the contents of this edge list, with no guarantee about the
/// ordering of the elements.
pub fn iter_unordered<'a>(
&self,
partials: &'a PartialPaths,
) -> impl Iterator<Item = PartialPathEdge> + 'a {
self.edges
.iter_unordered(&partials.partial_path_edges)
.copied()
}
fn ensure_both_directions(&mut self, partials: &mut PartialPaths) {
self.edges
.ensure_backwards(&mut partials.partial_path_edges);
self.edges.ensure_forwards(&mut partials.partial_path_edges);
}
fn ensure_forwards(&mut self, partials: &mut PartialPaths) {
self.edges.ensure_forwards(&mut partials.partial_path_edges);
}
}
impl DisplayWithPartialPaths for PartialPathEdgeList {
fn prepare(&mut self, graph: &StackGraph, partials: &mut PartialPaths) {
self.edges.ensure_forwards(&mut partials.partial_path_edges);
let mut edges = self.edges;
while let Some(mut edge) = edges.pop_front(&mut partials.partial_path_edges).copied() {
edge.prepare(graph, partials);
}
}
fn display_with(
&self,
graph: &StackGraph,
partials: &PartialPaths,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
for edge in self.edges.iter_reused(&partials.partial_path_edges) {
edge.display_with(graph, partials, f)?;
}
Ok(())
}
}
//-------------------------------------------------------------------------------------------------
// Partial paths
/// A portion of a name-binding path.
///
/// Partial paths can be computed _incrementally_, in which case all of the edges in the partial
/// path belong to a single file. At query time, we can efficiently concatenate partial paths to
/// yield a name-binding path.
///
/// Paths describe the contents of the symbol stack and scope stack at the end of the path.
/// Partial paths, on the other hand, have _preconditions_ and _postconditions_ for each stack.
/// The precondition describes what the stack must look like for us to be able to concatenate this
/// partial path onto the end of a path. The postcondition describes what the resulting stack
/// looks like after doing so.
///
/// The preconditions can contain _scope stack variables_, which describe parts of the scope stack
/// (or parts of a scope symbol's attached scope list) whose contents we don't care about. The
/// postconditions can _also_ refer to those variables, and describe how those variable parts of
/// the input scope stacks are carried through unmodified into the resulting scope stack.
#[repr(C)]
#[derive(Clone)]
pub struct PartialPath {
pub start_node: Handle<Node>,
pub end_node: Handle<Node>,
pub symbol_stack_precondition: PartialSymbolStack,
pub symbol_stack_postcondition: PartialSymbolStack,
pub scope_stack_precondition: PartialScopeStack,
pub scope_stack_postcondition: PartialScopeStack,
pub edges: PartialPathEdgeList,
}
impl PartialPath {
/// Creates a new empty partial path starting at a stack graph node.
pub fn from_node(
graph: &StackGraph,
partials: &mut PartialPaths,
node: Handle<Node>,
) -> PartialPath {
let initial_symbol_stack = SymbolStackVariable::initial();
let initial_scope_stack = ScopeStackVariable::initial();
let mut symbol_stack_precondition = PartialSymbolStack::from_variable(initial_symbol_stack);
let mut symbol_stack_postcondition =
PartialSymbolStack::from_variable(initial_symbol_stack);
let mut scope_stack_precondition = PartialScopeStack::from_variable(initial_scope_stack);
let mut scope_stack_postcondition = PartialScopeStack::from_variable(initial_scope_stack);
graph[node]
.append_to_partial_stacks(
graph,
partials,
&mut symbol_stack_precondition,
&mut scope_stack_precondition,
&mut symbol_stack_postcondition,
&mut scope_stack_postcondition,
)
.expect("lifting single nodes to partial paths should not fail");
PartialPath {
start_node: node,
end_node: node,
symbol_stack_precondition,
symbol_stack_postcondition,
scope_stack_precondition,
scope_stack_postcondition,
edges: PartialPathEdgeList::empty(),
}
}
/// Returns whether one path shadows another. Note that shadowing is not commutative — if path
/// A shadows path B, the reverse is not true.
pub fn shadows(&self, partials: &mut PartialPaths, other: &PartialPath) -> bool {
self.edges.shadows(partials, other.edges)
}
pub fn equals(&self, partials: &mut PartialPaths, other: &PartialPath) -> bool {
self.start_node == other.start_node
&& self.end_node == other.end_node
&& self
.symbol_stack_precondition
.equals(partials, other.symbol_stack_precondition)
&& self
.symbol_stack_postcondition
.equals(partials, other.symbol_stack_postcondition)
&& self
.scope_stack_precondition
.equals(partials, other.scope_stack_precondition)
&& self
.scope_stack_postcondition
.equals(partials, other.scope_stack_postcondition)
}
pub fn cmp(
&self,
graph: &StackGraph,
partials: &mut PartialPaths,
other: &PartialPath,
) -> std::cmp::Ordering {
std::cmp::Ordering::Equal
.then_with(|| self.start_node.cmp(&other.start_node))
.then_with(|| self.end_node.cmp(&other.end_node))
.then_with(|| {
self.symbol_stack_precondition
.cmp(graph, partials, other.symbol_stack_precondition)
})
.then_with(|| {
self.symbol_stack_postcondition.cmp(
graph,
partials,
other.symbol_stack_postcondition,
)
})
.then_with(|| {
self.scope_stack_precondition
.cmp(partials, other.scope_stack_precondition)
})
.then_with(|| {
self.scope_stack_postcondition
.cmp(partials, other.scope_stack_postcondition)
})
}
/// Returns whether a partial path represents the start of a name binding from a reference to a
/// definition.
pub fn starts_at_reference(&self, graph: &StackGraph) -> bool {
graph[self.start_node].is_reference()
&& self.symbol_stack_precondition.can_match_empty()
&& self.scope_stack_precondition.can_match_empty()
}
/// Returns whether a partial path represents the end of a name binding from a reference to a
/// definition.
pub fn ends_at_definition(&self, graph: &StackGraph) -> bool {
graph[self.end_node].is_definition() && self.symbol_stack_postcondition.can_match_empty()
}
/// A _complete_ partial path represents a full name binding that resolves a reference to a
/// definition.
pub fn is_complete(&self, graph: &StackGraph) -> bool {
self.starts_at_reference(graph) && self.ends_at_definition(graph)
}
pub fn starts_at_endpoint(&self, graph: &StackGraph) -> bool {
graph[self.start_node].is_endpoint()
}
pub fn ends_at_endpoint(&self, graph: &StackGraph) -> bool {
graph[self.end_node].is_endpoint()
}
pub fn ends_in_jump(&self, graph: &StackGraph) -> bool {
graph[self.end_node].is_jump_to()
}
/// Returns whether a partial path is cyclic---that is, it starts and ends at the same node,
/// and its postcondition is compatible with its precondition. If the path is cyclic, a
/// tuple is returned indicating whether cycle requires strengthening the pre- or postcondition.
pub fn is_cyclic(&self, graph: &StackGraph, partials: &mut PartialPaths) -> Option<Cyclicity> {
// StackGraph ensures that there are no nodes with duplicate IDs, so we can do a simple
// comparison of node handles here.
if self.start_node != self.end_node {
return None;
}
let lhs = self;
let mut rhs = self.clone();
rhs.ensure_no_overlapping_variables(partials, lhs);
let join = match Self::compute_join(graph, partials, lhs, &rhs) {
Ok(join) => join,
Err(_) => return None,
};
if lhs
.symbol_stack_precondition
.variable
.into_option()
.map_or(false, |v| join.symbol_bindings.get(v).iter().len() > 0)
|| lhs
.scope_stack_precondition
.variable
.into_option()
.map_or(false, |v| join.scope_bindings.get(v).iter().len() > 0)
{
Some(Cyclicity::StrengthensPrecondition)
} else if rhs
.symbol_stack_postcondition
.variable
.into_option()
.map_or(false, |v| join.symbol_bindings.get(v).iter().len() > 0)
|| rhs
.scope_stack_postcondition
.variable
.into_option()
.map_or(false, |v| join.scope_bindings.get(v).iter().len() > 0)
{
Some(Cyclicity::StrengthensPostcondition)
} else {
Some(Cyclicity::Free)
}
}
/// Ensures that the content of this partial path is available in both forwards and backwards
/// directions.
pub fn ensure_both_directions(&mut self, partials: &mut PartialPaths) {
self.symbol_stack_precondition
.ensure_both_directions(partials);
self.symbol_stack_postcondition
.ensure_both_directions(partials);
self.scope_stack_precondition
.ensure_both_directions(partials);
self.scope_stack_postcondition
.ensure_both_directions(partials);
self.edges.ensure_both_directions(partials);
let mut stack = self.symbol_stack_precondition;
while let Some(symbol) = stack.pop_front(partials) {
if let Some(mut scopes) = symbol.scopes.into_option() {
scopes.ensure_both_directions(partials);
}
}
let mut stack = self.symbol_stack_postcondition;
while let Some(symbol) = stack.pop_front(partials) {
if let Some(mut scopes) = symbol.scopes.into_option() {
scopes.ensure_both_directions(partials);
}
}
}
/// Ensures that the content of this partial path is in forwards direction.
pub fn ensure_forwards(&mut self, partials: &mut PartialPaths) {
self.symbol_stack_precondition.ensure_forwards(partials);
self.symbol_stack_postcondition.ensure_forwards(partials);
self.scope_stack_precondition.ensure_forwards(partials);
self.scope_stack_postcondition.ensure_forwards(partials);
self.edges.ensure_forwards(partials);
let mut stack = self.symbol_stack_precondition;
while let Some(symbol) = stack.pop_front(partials) {
if let Some(mut scopes) = symbol.scopes.into_option() {
scopes.ensure_forwards(partials);
}
}
let mut stack = self.symbol_stack_postcondition;
while let Some(symbol) = stack.pop_front(partials) {
if let Some(mut scopes) = symbol.scopes.into_option() {
scopes.ensure_forwards(partials);
}
}
}
/// Returns the largest value of any symbol stack variable in this partial path.
pub fn largest_symbol_stack_variable(&self) -> u32 {
// We don't have to check the postconditions, because it's not valid for a postcondition to
// refer to a variable that doesn't exist in the precondition.
self.symbol_stack_precondition
.largest_symbol_stack_variable()
}
/// Returns the largest value of any scope stack variable in this partial path.
pub fn largest_scope_stack_variable(&self, partials: &PartialPaths) -> u32 {
Self::largest_scope_stack_variable_for_partial_stacks(
partials,
&self.symbol_stack_precondition,
&self.scope_stack_precondition,
)
}
fn largest_scope_stack_variable_for_partial_stacks(
partials: &PartialPaths,
symbol_stack_precondition: &PartialSymbolStack,
scope_stack_precondition: &PartialScopeStack,
) -> u32 {
// We don't have to check the postconditions, because it's not valid for a postcondition to
// refer to a variable that doesn't exist in the precondition.
std::cmp::max(
symbol_stack_precondition.largest_scope_stack_variable(partials),
scope_stack_precondition.largest_scope_stack_variable(),
)
}
/// Returns a fresh scope stack variable that is not already used anywhere in this partial
/// path.
pub fn fresh_scope_stack_variable(&self, partials: &PartialPaths) -> ScopeStackVariable {
Self::fresh_scope_stack_variable_for_partial_stack(
partials,
&self.symbol_stack_precondition,
&self.scope_stack_precondition,
)
}
fn fresh_scope_stack_variable_for_partial_stack(
partials: &PartialPaths,
symbol_stack_precondition: &PartialSymbolStack,
scope_stack_precondition: &PartialScopeStack,
) -> ScopeStackVariable {
ScopeStackVariable::fresher_than(Self::largest_scope_stack_variable_for_partial_stacks(
partials,
symbol_stack_precondition,
scope_stack_precondition,
))
}
pub fn display<'a>(
&'a self,
graph: &'a StackGraph,
partials: &'a mut PartialPaths,
) -> impl Display + 'a {
display_with(self, graph, partials)
}
}
#[derive(Debug, EnumSetType)]
pub enum Cyclicity {
/// The path can be freely concatenated to itself.
Free,
/// Concatenating the path to itself strengthens the precondition---symbols are eliminated from the stack.
StrengthensPrecondition,
/// Concatenating the path to itself strengthens the postcondition---symbols are introduced on the stack.
StrengthensPostcondition,
}
impl<'a> DisplayWithPartialPaths for &'a PartialPath {
fn prepare(&mut self, graph: &StackGraph, partials: &mut PartialPaths) {
self.symbol_stack_precondition
.clone()
.prepare(graph, partials);
self.symbol_stack_postcondition
.clone()
.prepare(graph, partials);
self.scope_stack_precondition
.clone()
.prepare(graph, partials);
self.scope_stack_postcondition
.clone()
.prepare(graph, partials);
}
fn display_with(
&self,
graph: &StackGraph,
partials: &PartialPaths,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
write!(
f,
"<{}> ({}) {} -> {} <{}> ({})",
display_prepared(self.symbol_stack_precondition, graph, partials),
display_prepared(self.scope_stack_precondition, graph, partials),
self.start_node.display(graph),
self.end_node.display(graph),
display_prepared(self.symbol_stack_postcondition, graph, partials),
display_prepared(self.scope_stack_postcondition, graph, partials),
)
}
}
impl PartialPath {
/// Modifies this partial path so that it has no symbol or scope stack variables in common with
/// another partial path.
pub fn ensure_no_overlapping_variables(
&mut self,
partials: &mut PartialPaths,
other: &PartialPath,
) {
let symbol_variable_offset = other.largest_symbol_stack_variable();
let scope_variable_offset = other.largest_scope_stack_variable(partials);
self.symbol_stack_precondition = self.symbol_stack_precondition.with_offset(
partials,
symbol_variable_offset,
scope_variable_offset,
);
self.symbol_stack_postcondition = self.symbol_stack_postcondition.with_offset(
partials,
symbol_variable_offset,
scope_variable_offset,
);
self.scope_stack_precondition = self
.scope_stack_precondition
.with_offset(scope_variable_offset);
self.scope_stack_postcondition = self
.scope_stack_postcondition
.with_offset(scope_variable_offset);
}
/// Replaces stack variables in the precondition with empty stacks.
pub fn eliminate_precondition_stack_variables(&mut self, partials: &mut PartialPaths) {
let mut symbol_bindings = PartialSymbolStackBindings::new();
let mut scope_bindings = PartialScopeStackBindings::new();
if let Some(symbol_variable) = self.symbol_stack_precondition.variable() {
symbol_bindings
.add(
partials,
symbol_variable,
PartialSymbolStack::empty(),
&mut scope_bindings,
)
.unwrap();
}
if let Some(scope_variable) = self.scope_stack_precondition.variable() {
scope_bindings
.add(partials, scope_variable, PartialScopeStack::empty())
.unwrap();
}
self.symbol_stack_precondition = self
.symbol_stack_precondition
.apply_partial_bindings(partials, &symbol_bindings, &scope_bindings)
.unwrap();
self.scope_stack_precondition = self
.scope_stack_precondition
.apply_partial_bindings(partials, &scope_bindings)
.unwrap();
self.symbol_stack_postcondition = self
.symbol_stack_postcondition
.apply_partial_bindings(partials, &symbol_bindings, &scope_bindings)
.unwrap();
self.scope_stack_postcondition = self
.scope_stack_postcondition
.apply_partial_bindings(partials, &scope_bindings)
.unwrap();
}
/// Attempts to append an edge to the end of a partial path. If the edge is not a valid
/// extension of this partial path, we return an error describing why.
pub fn append(
&mut self,
graph: &StackGraph,
partials: &mut PartialPaths,
edge: Edge,
) -> Result<(), PathResolutionError> {
if edge.source != self.end_node {
return Err(PathResolutionError::IncorrectSourceNode);
}
graph[edge.sink].append_to_partial_stacks(
graph,
partials,
&mut self.symbol_stack_precondition,
&mut self.scope_stack_precondition,
&mut self.symbol_stack_postcondition,
&mut self.scope_stack_postcondition,
)?;
self.end_node = edge.sink;
self.edges.push_back(
partials,
PartialPathEdge {
source_node_id: graph[edge.source].id(),
precedence: edge.precedence,
},
);
self.resolve_from_postcondition(graph, partials)?;
Ok(())
}
/// Attempts to resolve any _jump to scope_ node at the end of a partial path from the postcondition
/// scope stack. If the partial path does not end in a _jump to scope_ node, we do nothing. If it
/// does, and we cannot resolve it, then we return an error describing why.
pub fn resolve_from_postcondition(
&mut self,
graph: &StackGraph,
partials: &mut PartialPaths,
) -> Result<(), PathResolutionError> {
if !graph[self.end_node].is_jump_to() {
return Ok(());
}
if self.scope_stack_postcondition.can_only_match_empty() {
return Err(PathResolutionError::EmptyScopeStack);
}
if !self.scope_stack_postcondition.contains_scopes() {
return Ok(());
}
let top_scope = self.scope_stack_postcondition.pop_front(partials).unwrap();
self.edges.push_back(
partials,
PartialPathEdge {
source_node_id: graph[self.end_node].id(),
precedence: 0,
},
);
self.end_node = top_scope;
Ok(())
}
/// Resolve any _jump to scope_ node at the end of a partial path to the given node, updating the
/// precondition to include the given node. If the partial path does not end in a _jump to scope_
/// node, we do nothing. If it does, and we cannot resolve it, then we return an error describing
/// why.
pub fn resolve_to_node(
&mut self,
graph: &StackGraph,
partials: &mut PartialPaths,
node: Handle<Node>,
) -> Result<(), PathResolutionError> {
if !graph[self.end_node].is_jump_to() {
return Ok(());
}
let scope_variable = match self.scope_stack_postcondition.variable() {
Some(scope_variable) => scope_variable,
None => return Err(PathResolutionError::ScopeStackUnsatisfied),
};
let mut scope_stack = PartialScopeStack::from_variable(scope_variable);
scope_stack.push_front(partials, node);
let symbol_bindings = PartialSymbolStackBindings::new();
let mut scope_bindings = PartialScopeStackBindings::new();
scope_bindings
.add(partials, scope_variable, scope_stack)
.unwrap();
self.symbol_stack_precondition = self
.symbol_stack_precondition
.apply_partial_bindings(partials, &symbol_bindings, &scope_bindings)
.unwrap();
self.scope_stack_precondition = self
.scope_stack_precondition
.apply_partial_bindings(partials, &scope_bindings)
.unwrap();
self.end_node = node;
Ok(())
}
}
impl Node {
/// Update the given partial path pre- and postconditions with the effect of
/// appending this node to that partial path.
pub(crate) fn append_to_partial_stacks(
&self,
graph: &StackGraph,
partials: &mut PartialPaths,
symbol_stack_precondition: &mut PartialSymbolStack,
scope_stack_precondition: &mut PartialScopeStack,
symbol_stack_postcondition: &mut PartialSymbolStack,
scope_stack_postcondition: &mut PartialScopeStack,
) -> Result<(), PathResolutionError> {
match self {
Self::DropScopes(_) => {
*scope_stack_postcondition = PartialScopeStack::empty();
}
Self::JumpTo(_) => {}
Self::PopScopedSymbol(sink) => {
// Ideally we want to pop sink's scoped symbol off from top of the symbol stack
// postcondition.
if let Some(top) = symbol_stack_postcondition.pop_front(partials) {
if top.symbol != sink.symbol {
return Err(PathResolutionError::IncorrectPoppedSymbol);
}
let new_scope_stack = match top.scopes.into_option() {
Some(scopes) => scopes,
None => return Err(PathResolutionError::MissingAttachedScopeList),
};
*scope_stack_postcondition = new_scope_stack;
} else if symbol_stack_postcondition.has_variable() {
// If the symbol stack postcondition is empty but has a variable, then we can update
// the _precondition_ to indicate that the symbol stack needs to contain this scoped
// symbol in order to successfully use this partial path.
let scope_stack_variable =
PartialPath::fresh_scope_stack_variable_for_partial_stack(
partials,
symbol_stack_precondition,
scope_stack_precondition,
);
let precondition_symbol = PartialScopedSymbol {
symbol: sink.symbol,
scopes: ControlledOption::some(PartialScopeStack::from_variable(
scope_stack_variable,
)),
};
// We simply push to the precondition. The official procedure here
// is to bind the postcondition symbol stack variable to the symbol
// and a fresh variable, and apply that. However, because the variable
// can only be bound in the precondition symbol stack, this amounts to
// pushing the symbol there directly.
symbol_stack_precondition.push_back(partials, precondition_symbol);
*scope_stack_postcondition =
PartialScopeStack::from_variable(scope_stack_variable);
} else {
// The symbol stack postcondition is empty and has no variable, so we cannot
// perform the operation.
return Err(PathResolutionError::SymbolStackUnsatisfied);
}
}
Self::PopSymbol(sink) => {
// Ideally we want to pop sink's symbol off from top of the symbol stack postcondition.
if let Some(top) = symbol_stack_postcondition.pop_front(partials) {
if top.symbol != sink.symbol {
return Err(PathResolutionError::IncorrectPoppedSymbol);
}
if top.scopes.is_some() {
return Err(PathResolutionError::UnexpectedAttachedScopeList);
}
} else if symbol_stack_postcondition.has_variable() {
// If the symbol stack postcondition is empty but has a variable, then we can update
// the _precondition_ to indicate that the symbol stack needs to contain this symbol
// in order to successfully use this partial path.
let precondition_symbol = PartialScopedSymbol {
symbol: sink.symbol,
scopes: ControlledOption::none(),
};
// We simply push to the precondition. The official procedure here
// is to bind the postcondition symbol stack variable to the symbol
// and a fresh variable, and apply that. However, because the variable
// can only be bound in the precondition symbol stack, this amounts to
// pushing the symbol there directly.
symbol_stack_precondition.push_back(partials, precondition_symbol);
} else {
// The symbol stack postcondition is empty and has no variable, so we cannot
// perform the operation.
return Err(PathResolutionError::SymbolStackUnsatisfied);
}
}
Self::PushScopedSymbol(sink) => {
// The symbol stack postcondition is our representation of the path's symbol stack.
// Pushing the scoped symbol onto our postcondition indicates that using this partial
// path would push the scoped symbol onto the path's symbol stack.
let sink_symbol = sink.symbol;
let sink_scope = graph
.node_for_id(sink.scope)
.ok_or(PathResolutionError::UnknownAttachedScope)?;
let mut attached_scopes = scope_stack_postcondition.clone();
attached_scopes.push_front(partials, sink_scope);
let postcondition_symbol = PartialScopedSymbol {
symbol: sink_symbol,
scopes: ControlledOption::some(attached_scopes),
};
symbol_stack_postcondition.push_front(partials, postcondition_symbol);
}
Self::PushSymbol(sink) => {
// The symbol stack postcondition is our representation of the path's symbol stack.
// Pushing the symbol onto our postcondition indicates that using this partial path
// would push the symbol onto the path's symbol stack.
let sink_symbol = sink.symbol;
let postcondition_symbol = PartialScopedSymbol {
symbol: sink_symbol,
scopes: ControlledOption::none(),
};
symbol_stack_postcondition.push_front(partials, postcondition_symbol);
}
Self::Root(_) => {}
Self::Scope(_) => {}
}
Ok(())
}
/// Ensure the given closed precondition stacks are half-open for this end node.
///
/// Partial paths have closed (cf. a closed interval) pre- and postconditions, which means
/// the start node is reflected in the precondition, and the end node is reflected in the
/// postcondition. For example, a path starting with a pop node, has a precondition starting
/// with the popped symbol. Similarly, a ending with a push node, has a postcondition ending
/// with the pushed symbol.
///
/// When concatenating two partial paths, their closed pre- and postconditions are not compatible,
/// because the effect of the join node (i.e., the node shared between the two paths) is present
/// in both the right and the left path. If two paths join at a push node, the right postcondition
/// contains the pushed symbol, while the left precondition does not contain it, behaving as if the
/// symbol was pushed twice. Similarly, when joining at a pop node, the right precondition contains
/// the popped symbol, while the right postcondition will not anymore, because it was already popped.
/// Unifying closed pre- and postconditions can result in incorrect concatenation results.
///
/// We can make pre- and postconditions compatible again by making them half-open (cf. open intervals,
/// but half because we only undo the effect of some node types). A precondition is half-open if it
/// does not reflect the effect if a start pop node, Similarly, a postcondition is half-open if it
/// does not reflect the effect of an end push node. Unifying half-open pre- and postconditions results
/// in the correct behavior for path concatenation.
fn halfopen_closed_partial_precondition(
&self,
partials: &mut PartialPaths,
symbol_stack: &mut PartialSymbolStack,
scope_stack: &mut PartialScopeStack,
) -> Result<(), PathResolutionError> {
match self {
Node::DropScopes(_) => {}
Node::JumpTo(_) => {}
Node::PopScopedSymbol(node) => {
let symbol = symbol_stack
.pop_front(partials)
.ok_or(PathResolutionError::EmptySymbolStack)?;
if symbol.symbol != node.symbol {
return Err(PathResolutionError::IncorrectPoppedSymbol);
}
*scope_stack = symbol.scopes.into_option().unwrap();
}
Node::PopSymbol(node) => {
let symbol = symbol_stack
.pop_front(partials)
.ok_or(PathResolutionError::EmptySymbolStack)?;
if symbol.symbol != node.symbol {
return Err(PathResolutionError::IncorrectPoppedSymbol);
}
}
Node::PushScopedSymbol(_) => {}
Node::PushSymbol(_) => {}
Node::Root(_) => {}
Node::Scope(_) => {}
};
Ok(())
}
/// Ensure the given closed postcondition stacks are half-open for this start node.
///
/// Partial paths have closed (cf. a closed interval) pre- and postconditions, which means
/// the start node is reflected in the precondition, and the end node is reflected in the
/// postcondition. For example, a path starting with a pop node, has a precondition starting
/// with the popped symbol. Similarly, a ending with a push node, has a postcondition ending
/// with the pushed symbol.
///
/// When concatenating two partial paths, their closed pre- and postconditions are not compatible,
/// because the effect of the join node (i.e., the node shared between the two paths) is present
/// in both the right and the left path. If two paths join at a push node, the right postcondition
/// contains the pushed symbol, while the left precondition does not contain it, behaving as if the
/// symbol was pushed twice. Similarly, when joining at a pop node, the right precondition contains
/// the popped symbol, while the right postcondition will not anymore, because it was already popped.
/// Unifying closed pre- and postconditions can result in incorrect concatenation results.
///
/// We can make pre- and postconditions compatible again by making them half-open (cf. open intervals,
/// but half because we only undo the effect of some node types). A precondition is half-open if it
/// does not reflect the effect if a start pop node, Similarly, a postcondition is half-open if it
/// does not reflect the effect of an end push node. Unifying half-open pre- and postconditions results
/// in the correct behavior for path concatenation.
fn halfopen_closed_partial_postcondition(
&self,
partials: &mut PartialPaths,
symbol_stack: &mut PartialSymbolStack,
_scope_stack: &mut PartialScopeStack,
) -> Result<(), PathResolutionError> {
match self {
Self::DropScopes(_) => {}
Self::JumpTo(_) => {}
Self::PopScopedSymbol(_) => {}
Self::PopSymbol(_) => {}
Self::PushScopedSymbol(node) => {
let symbol = symbol_stack
.pop_front(partials)
.ok_or(PathResolutionError::EmptySymbolStack)?;
if symbol.symbol != node.symbol {
return Err(PathResolutionError::IncorrectPoppedSymbol);
}
}
Self::PushSymbol(node) => {
let symbol = symbol_stack
.pop_front(partials)
.ok_or(PathResolutionError::EmptySymbolStack)?;
if symbol.symbol != node.symbol {
return Err(PathResolutionError::IncorrectPoppedSymbol);
}
}
Self::Root(_) => {}
Self::Scope(_) => {}
};
Ok(())
}
}
//-------------------------------------------------------------------------------------------------
// Extending partial paths with partial paths
impl PartialPath {
/// Attempts to append a partial path to this one. If the postcondition of the “left” partial path
/// is not compatible with the precondition of the “right” path, we return an error describing why.
///
/// If the left- and right-hand partial paths have any symbol or scope stack variables in
/// common, then we ensure that the variables bind to the same values on both sides. It's your
/// responsibility to update the two partial paths so that they have no variables in common, if
/// that's needed for your use case.
#[cfg_attr(not(feature = "copious-debugging"), allow(unused_variables))]
pub fn concatenate(
&mut self,
graph: &StackGraph,
partials: &mut PartialPaths,
rhs: &PartialPath,
) -> Result<(), PathResolutionError> {
let lhs = self;
#[cfg_attr(not(feature = "copious-debugging"), allow(unused_mut))]
let mut join = Self::compute_join(graph, partials, lhs, rhs)?;
#[cfg(feature = "copious-debugging")]
{
let unified_symbol_stack = join
.unified_symbol_stack
.display(graph, partials)
.to_string();
let unified_scope_stack = join
.unified_scope_stack
.display(graph, partials)
.to_string();
let symbol_bindings = join.symbol_bindings.display(graph, partials).to_string();
let scope_bindings = join.scope_bindings.display(graph, partials).to_string();
copious_debugging!(
" via <{}> ({}) {} {}",
unified_symbol_stack,
unified_scope_stack,
symbol_bindings,
scope_bindings,
);
}
lhs.symbol_stack_precondition = lhs.symbol_stack_precondition.apply_partial_bindings(
partials,
&join.symbol_bindings,
&join.scope_bindings,
)?;
lhs.symbol_stack_postcondition = rhs.symbol_stack_postcondition.apply_partial_bindings(
partials,
&join.symbol_bindings,
&join.scope_bindings,
)?;
lhs.scope_stack_precondition = lhs
.scope_stack_precondition
.apply_partial_bindings(partials, &join.scope_bindings)?;
lhs.scope_stack_postcondition = rhs
.scope_stack_postcondition
.apply_partial_bindings(partials, &join.scope_bindings)?;
let mut edges = rhs.edges;
while let Some(edge) = edges.pop_front(partials) {
lhs.edges.push_back(partials, edge);
}
lhs.end_node = rhs.end_node;
lhs.resolve_from_postcondition(graph, partials)?;
Ok(())
}
/// Compute the bindings to join to partial paths. It is the caller's responsibility
/// to ensure non-overlapping variables, if that is required.
fn compute_join(
graph: &StackGraph,
partials: &mut PartialPaths,
lhs: &PartialPath,
rhs: &PartialPath,
) -> Result<Join, PathResolutionError> {
if lhs.end_node != rhs.start_node {
return Err(PathResolutionError::IncorrectSourceNode);
}
// Ensure the right post- and left precondition are half-open, so we can unify them.
let mut lhs_symbol_stack_postcondition = lhs.symbol_stack_postcondition;
let mut lhs_scope_stack_postcondition = lhs.scope_stack_postcondition;
let mut rhs_symbol_stack_precondition = rhs.symbol_stack_precondition;
let mut rhs_scope_stack_precondition = rhs.scope_stack_precondition;
graph[lhs.end_node]
.halfopen_closed_partial_postcondition(
partials,
&mut lhs_symbol_stack_postcondition,
&mut lhs_scope_stack_postcondition,
)
.unwrap_or_else(|e| {
panic!(
"failed to halfopen postcondition of {}: {:?}",
lhs.display(graph, partials),
e
);
});
graph[rhs.start_node]
.halfopen_closed_partial_precondition(
partials,
&mut rhs_symbol_stack_precondition,
&mut rhs_scope_stack_precondition,
)
.unwrap_or_else(|e| {
panic!(
"failed to halfopen postcondition of {}: {:?}",
rhs.display(graph, partials),
e
);
});
let mut symbol_bindings = PartialSymbolStackBindings::new();
let mut scope_bindings = PartialScopeStackBindings::new();
let unified_symbol_stack = lhs_symbol_stack_postcondition.unify(
partials,
rhs_symbol_stack_precondition,
&mut symbol_bindings,
&mut scope_bindings,
)?;
let unified_scope_stack = lhs_scope_stack_postcondition.unify(
partials,
rhs_scope_stack_precondition,
&mut scope_bindings,
)?;
Ok(Join {
unified_symbol_stack,
unified_scope_stack,
symbol_bindings,
scope_bindings,
})
}
}
struct Join {
#[cfg_attr(not(feature = "copious-debugging"), allow(dead_code))]
pub unified_symbol_stack: PartialSymbolStack,
#[cfg_attr(not(feature = "copious-debugging"), allow(dead_code))]
pub unified_scope_stack: PartialScopeStack,
pub symbol_bindings: PartialSymbolStackBindings,
pub scope_bindings: PartialScopeStackBindings,
}
//-------------------------------------------------------------------------------------------------
// Partial path resolution state
/// Manages the state of a collection of partial paths built up as part of the partial-path-finding
/// algorithm or path-stitching algorithm.
pub struct PartialPaths {
pub(crate) partial_symbol_stacks: DequeArena<PartialScopedSymbol>,
pub(crate) partial_scope_stacks: DequeArena<Handle<Node>>,
pub(crate) partial_path_edges: DequeArena<PartialPathEdge>,
}
impl PartialPaths {
pub fn new() -> PartialPaths {
PartialPaths {
partial_symbol_stacks: Deque::new_arena(),
partial_scope_stacks: Deque::new_arena(),
partial_path_edges: Deque::new_arena(),
}
}
#[cfg_attr(not(feature = "storage"), allow(dead_code))]
pub(crate) fn clear(&mut self) {
self.partial_symbol_stacks.clear();
self.partial_scope_stacks.clear();
self.partial_path_edges.clear();
}
}