1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
// -*- coding: utf-8 -*-
// ------------------------------------------------------------------------------------------------
// Copyright © 2021, stack-graphs authors.
// Licensed under either of Apache License, Version 2.0, or MIT license, at your option.
// Please see the LICENSE-APACHE or LICENSE-MIT files in this distribution for license details.
// ------------------------------------------------------------------------------------------------
//! Detect and avoid cycles in our path-finding algorithm.
//!
//! Cycles in a stack graph can indicate many things. Your language might allow mutually recursive
//! imports. If you are modeling dataflow through function calls, then any recursion in your
//! function calls will lead to cycles in your stack graph. And if you have any control-flow paths
//! that lead to infinite loops at runtime, we'll probably discover those as stack graph paths
//! during the path-finding algorithm.
//!
//! (Note that we're only considering cycles in well-formed paths. For instance, _pop symbol_
//! nodes are "guards" that don't allow you to progress into a node if the top of the symbol stack
//! doesn't match. We don't consider that a valid path, and so we don't have to worry about
//! whether it contains any cycles.)
//!
//! This module implements a cycle detector that lets us detect these situations and "cut off"
//! these paths, not trying to extend them any further. Note that any cycle detection logic we
//! implement will be a heuristic. In particular, since our path-finding algorithm will mimic any
//! runtime recursion, a "complete" cycle detection logic would be equivalent to the Halting
//! Problem.
//!
//! Right now, we implement a simple heuristic where we limit the number of distinct paths that we
//! process that have the same start and end nodes. We do not make any guarantees that we will
//! always use this particular heuristic, however! We reserve the right to change the heuristic at
//! any time.
use enumset::EnumSet;
use smallvec::SmallVec;
use std::cmp::Ordering;
use std::collections::HashMap;
use crate::arena::Arena;
use crate::arena::Handle;
use crate::arena::List;
use crate::arena::ListArena;
use crate::graph::Node;
use crate::graph::StackGraph;
use crate::partial::Cyclicity;
use crate::partial::PartialPath;
use crate::partial::PartialPaths;
use crate::paths::PathResolutionError;
use crate::stats::FrequencyDistribution;
use crate::stitching::Appendable;
use crate::stitching::ToAppendable;
/// Helps detect similar paths in the path-finding algorithm.
pub struct SimilarPathDetector<P> {
paths: HashMap<PathKey, SmallVec<[P; 4]>>,
counts: Option<HashMap<PathKey, SmallVec<[usize; 4]>>>,
}
#[doc(hidden)]
#[derive(Clone, Eq, Hash, PartialEq)]
pub struct PathKey {
start_node: Handle<Node>,
end_node: Handle<Node>,
symbol_stack_precondition_len: usize,
scope_stack_precondition_len: usize,
symbol_stack_postcondition_len: usize,
scope_stack_postcondition_len: usize,
}
#[doc(hidden)]
pub trait HasPathKey: Clone {
type Arena;
fn key(&self) -> PathKey;
}
impl HasPathKey for PartialPath {
type Arena = PartialPaths;
fn key(&self) -> PathKey {
PathKey {
start_node: self.start_node,
end_node: self.end_node,
symbol_stack_precondition_len: self.symbol_stack_precondition.len(),
scope_stack_precondition_len: self.scope_stack_precondition.len(),
symbol_stack_postcondition_len: self.symbol_stack_postcondition.len(),
scope_stack_postcondition_len: self.scope_stack_postcondition.len(),
}
}
}
impl<P> SimilarPathDetector<P>
where
P: HasPathKey,
{
/// Creates a new, empty cycle detector.
pub fn new() -> SimilarPathDetector<P> {
SimilarPathDetector {
paths: HashMap::new(),
counts: None,
}
}
/// Set whether to collect statistics for this similar path detector.
pub fn set_collect_stats(&mut self, collect_stats: bool) {
if !collect_stats {
self.counts = None;
} else if self.counts.is_none() {
self.counts = Some(HashMap::new());
}
}
/// Add a path, and determine whether we should process this path during the path-finding algorithm.
/// If we have seen a path with the same start and end node, and the same pre- and postcondition, then
/// we return false. Otherwise, we return true.
pub fn add_path<Cmp>(
&mut self,
_graph: &StackGraph,
arena: &mut P::Arena,
path: &P,
cmp: Cmp,
) -> bool
where
Cmp: Fn(&mut P::Arena, &P, &P) -> Option<Ordering>,
{
let key = path.key();
// Iterate through the bucket to determine if this paths is better than any already known
// path. Note that the bucket might be modified during the loop if a path is removed which
// is shadowed by the new path!
let possibly_similar_paths = self.paths.entry(key.clone()).or_default();
let mut possible_similar_counts = self
.counts
.as_mut()
.map(move |cs| cs.entry(key).or_default());
let mut idx = 0;
let mut count = 0;
while idx < possibly_similar_paths.len() {
let other_path = &mut possibly_similar_paths[idx];
match cmp(arena, path, other_path) {
Some(Ordering::Less) => {
// the new path is better, remove the old one
possibly_similar_paths.remove(idx);
if let Some(possible_similar_counts) = possible_similar_counts.as_mut() {
count += possible_similar_counts[idx];
possible_similar_counts.remove(idx);
}
// keep `idx` which now points to the next element
continue;
}
Some(_) => {
// the new path is equal or worse, and ignored
if let Some(possible_similar_counts) = possible_similar_counts {
possible_similar_counts[idx] += 1;
}
return true;
}
None => {
idx += 1;
}
}
}
// this path is either new or better, keep it
possibly_similar_paths.push(path.clone());
if let Some(possible_similar_counts) = possible_similar_counts {
possible_similar_counts.push(count);
}
false
}
#[cfg(feature = "copious-debugging")]
pub fn max_bucket_size(&self) -> usize {
self.paths.iter().map(|b| b.1.len()).max().unwrap_or(0)
}
// Returns the distribution of similar path counts.
pub fn stats(&self) -> SimilarPathStats {
let mut stats = SimilarPathStats::default();
if let Some(counts) = &self.counts {
for bucket in counts.values() {
stats.similar_path_bucket_size.record(bucket.len());
for count in bucket.iter() {
stats.similar_path_count.record(*count);
}
}
}
stats
}
}
#[derive(Clone, Debug, Default)]
pub struct SimilarPathStats {
// The distribution of the number of similar paths detected
pub similar_path_count: FrequencyDistribution<usize>,
// The distribution of the internal bucket sizes in the similar path detector
pub similar_path_bucket_size: FrequencyDistribution<usize>,
}
impl std::ops::AddAssign<Self> for SimilarPathStats {
fn add_assign(&mut self, rhs: Self) {
self.similar_path_bucket_size += rhs.similar_path_bucket_size;
self.similar_path_count += rhs.similar_path_count;
}
}
impl std::ops::AddAssign<&Self> for SimilarPathStats {
fn add_assign(&mut self, rhs: &Self) {
self.similar_path_bucket_size += &rhs.similar_path_bucket_size;
self.similar_path_count += &rhs.similar_path_count;
}
}
// ----------------------------------------------------------------------------
// Cycle detector
/// An arena used by [`AppendingCycleDetector`][] to store the path component lists.
/// The arena is shared between all cycle detectors in a path stitching run, so that
/// the cycle detectors themselves can be small and cheaply cloned.
pub struct Appendables<H> {
/// List arena for appendable lists
elements: ListArena<InternedOrHandle<H>>,
/// Arena for interned partial paths
interned: Arena<PartialPath>,
}
impl<H> Appendables<H> {
pub fn new() -> Self {
Self {
elements: ListArena::new(),
interned: Arena::new(),
}
}
}
/// Enum that unifies handles to initial paths interned in the cycle detector, and appended
/// handles to appendables in the external database.
#[derive(Clone)]
enum InternedOrHandle<H> {
Interned(Handle<PartialPath>),
Database(H),
}
impl<H> InternedOrHandle<H>
where
H: Clone,
{
fn append_to<'a, A, Db>(
&self,
graph: &StackGraph,
partials: &mut PartialPaths,
db: &'a Db,
interned: &Arena<PartialPath>,
path: &mut PartialPath,
) -> Result<(), PathResolutionError>
where
A: Appendable + 'a,
Db: ToAppendable<H, A>,
{
match self {
Self::Interned(h) => interned.get(*h).append_to(graph, partials, path),
Self::Database(h) => db.get_appendable(h).append_to(graph, partials, path),
}
}
fn start_node<'a, A, Db>(&self, db: &'a Db, interned: &Arena<PartialPath>) -> Handle<Node>
where
A: Appendable + 'a,
Db: ToAppendable<H, A>,
{
match self {
Self::Interned(h) => interned.get(*h).start_node,
Self::Database(h) => db.get_appendable(h).start_node(),
}
}
fn end_node<'a, A, Db>(&self, db: &'a Db, interned: &Arena<PartialPath>) -> Handle<Node>
where
A: Appendable + 'a,
Db: ToAppendable<H, A>,
{
match self {
Self::Interned(h) => interned.get(*h).end_node,
Self::Database(h) => db.get_appendable(h).end_node(),
}
}
}
/// A cycle detector that builds up paths by appending elements to it.
/// Path elements are stored in a shared arena that must be provided
/// when calling methods, so that cloning the cycle detector itself is
/// cheap.
#[derive(Clone)]
pub struct AppendingCycleDetector<H> {
appendages: List<InternedOrHandle<H>>,
}
impl<H> AppendingCycleDetector<H> {
pub fn new() -> Self {
Self {
appendages: List::empty(),
}
}
pub fn from(appendables: &mut Appendables<H>, path: PartialPath) -> Self {
let h = appendables.interned.add(path);
let mut result = Self::new();
result
.appendages
.push_front(&mut appendables.elements, InternedOrHandle::Interned(h));
result
}
pub fn append(&mut self, appendables: &mut Appendables<H>, appendage: H) {
self.appendages.push_front(
&mut appendables.elements,
InternedOrHandle::Database(appendage),
);
}
}
impl<H> AppendingCycleDetector<H>
where
H: Clone,
{
/// Tests if the path is cyclic. Returns a vector indicating the kind of cycles that were found.
/// If appending or concatenating all fragments succeeds, this function will never raise and error.
pub fn is_cyclic<'a, A, Db>(
&self,
graph: &StackGraph,
partials: &mut PartialPaths,
db: &'a Db,
appendables: &mut Appendables<H>,
) -> Result<EnumSet<Cyclicity>, PathResolutionError>
where
A: Appendable + 'a,
Db: ToAppendable<H, A>,
{
let mut cycles = EnumSet::new();
let end_node = match self.appendages.clone().pop_front(&mut appendables.elements) {
Some(appendage) => appendage.end_node(db, &appendables.interned),
None => return Ok(cycles),
};
let mut maybe_cyclic_path = None;
let mut remaining_appendages = self.appendages;
// Unlike the stored appendages, which are stored in a shared arena, we use a _local_
// buffer to collect the prefix appendages that we collect for possible cycles. This is
// to prevent adding elements to the shared arena for every invocation of this method,
// because they would remain in the arena after the method returns. We take care to
// minimize (re)allocations by (a) only allocating when a possible cycle is detected,
// (b) reserving all necessary space before adding elements, and (c) reusing the buffer
// between loop iterations.
let mut prefix_appendages = Vec::new();
loop {
// find cycle length
let mut counting_appendages = remaining_appendages;
let mut cycle_length = 0usize;
loop {
let appendable = counting_appendages.pop_front(&mut appendables.elements);
match appendable {
Some(appendage) => {
cycle_length += 1;
let is_cycle = appendage.start_node(db, &appendables.interned) == end_node;
if is_cycle {
break;
}
}
None => return Ok(cycles),
}
}
// collect prefix elements (reversing their order)
prefix_appendages.clear();
prefix_appendages.reserve(cycle_length);
for _ in 0..cycle_length {
let appendable = remaining_appendages
.pop_front(&mut appendables.elements)
.expect("")
.clone();
prefix_appendages.push(appendable);
}
// build prefix path -- prefix starts at end_node, because this is a cycle
let mut prefix_path = PartialPath::from_node(graph, partials, end_node);
while let Some(appendage) = prefix_appendages.pop() {
appendage.append_to(
graph,
partials,
db,
&appendables.interned,
&mut prefix_path,
)?;
}
// build cyclic path
let cyclic_path = maybe_cyclic_path
.unwrap_or_else(|| PartialPath::from_node(graph, partials, end_node));
cyclic_path.append_to(graph, partials, &mut prefix_path)?;
if prefix_path.edges.len() > 0 {
if let Some(cyclicity) = prefix_path.is_cyclic(graph, partials) {
cycles |= cyclicity;
}
}
maybe_cyclic_path = Some(prefix_path);
}
}
}