1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
// -*- coding: utf-8 -*-
// ------------------------------------------------------------------------------------------------
// Copyright © 2021, stack-graphs authors.
// Licensed under either of Apache License, Version 2.0, or MIT license, at your option.
// Please see the LICENSE-APACHE or LICENSE-MIT files in this distribution for license details.
// ------------------------------------------------------------------------------------------------
//! Cache-friendly arena allocation for stack graph data.
//!
//! A stack graph is composed of instances of many different data types, and to store the graph
//! structure itself, we need cyclic or self-referential data types. The typical way to achieve
//! this in Rust is to use [arena allocation][], where all of the instances of a particular type
//! are stored in a single vector. You then use indexes into this vector to store references to a
//! data instance. Because indexes are just numbers, you don't run afoul of borrow checker. And
//! because all instances live together in a continguous region of memory, your data access
//! patterns are very cache-friendly.
//!
//! This module implements a simple arena allocation scheme for stack graphs. An
//! [`Arena<T>`][`Arena`] is an arena that holds all of the instances of type `T` for a stack
//! graph. A [`Handle<T>`][`Handle`] holds the index of a particular instance of `T` in its arena.
//! All of our stack graph data types then use handles to refer to other parts of the stack graph.
//!
//! Note that our arena implementation does not support deletion! Any content that you add to a
//! [`StackGraph`][] will live as long as the stack graph itself does. The entire region of memory
//! for each arena will be freed in a single operation when the stack graph is dropped.
//!
//! [arena allocation]: https://en.wikipedia.org/wiki/Region-based_memory_management
//! [`Arena`]: struct.Arena.html
//! [`Handle`]: struct.Handle.html
//! [`StackGraph`]: ../graph/struct.StackGraph.html
use std::cell::Cell;
use std::fmt::Debug;
use std::hash::Hash;
use std::hash::Hasher;
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::num::NonZeroU32;
use std::ops::Index;
use std::ops::IndexMut;
use bitvec::vec::BitVec;
use controlled_option::Niche;
use crate::utils::cmp_option;
use crate::utils::equals_option;
//-------------------------------------------------------------------------------------------------
// Arenas and handles
/// A handle to an instance of type `T` that was allocated from an [`Arena`][].
///
/// #### Safety
///
/// Because of the type parameter `T`, the compiler can ensure that you don't use a handle for one
/// type to index into an arena of another type. However, if you have multiple arenas for the
/// _same type_, we do not do anything to ensure that you only use a handle with the corresponding
/// arena.
#[repr(transparent)]
pub struct Handle<T> {
index: NonZeroU32,
_phantom: PhantomData<T>,
}
impl<T> Handle<T> {
pub(crate) fn new(index: NonZeroU32) -> Handle<T> {
Handle {
index,
_phantom: PhantomData,
}
}
#[inline(always)]
pub fn as_u32(self) -> u32 {
self.index.get()
}
#[inline(always)]
pub fn as_usize(self) -> usize {
self.index.get() as usize
}
}
impl<T> Niche for Handle<T> {
type Output = u32;
#[inline]
fn none() -> Self::Output {
0
}
#[inline]
fn is_none(value: &Self::Output) -> bool {
*value == 0
}
#[inline]
fn into_some(value: Self) -> Self::Output {
value.index.get()
}
#[inline]
fn from_some(value: Self::Output) -> Self {
Self::new(unsafe { NonZeroU32::new_unchecked(value) })
}
}
// Normally we would #[derive] all of these traits, but the auto-derived implementations all
// require that T implement the trait as well. We don't store any real instances of T inside of
// Handle, so our implementations do _not_ require that.
impl<T> Clone for Handle<T> {
fn clone(&self) -> Handle<T> {
Handle::new(self.index)
}
}
impl<T> Copy for Handle<T> {}
impl<T> Debug for Handle<T> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct("Handle")
.field("index", &self.index)
.finish()
}
}
impl<T> Eq for Handle<T> {}
impl<T> Hash for Handle<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.index.hash(state);
}
}
impl<T> Ord for Handle<T> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.index.cmp(&other.index)
}
}
impl<T> PartialEq for Handle<T> {
fn eq(&self, other: &Self) -> bool {
self.index == other.index
}
}
impl<T> PartialOrd for Handle<T> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
self.index.partial_cmp(&other.index)
}
}
// Handles are always Send and Sync, even if the underlying types are not. After all, a handle is
// just a number! And you _also_ need access to the Arena (which _won't_ be Send/Sync if T isn't)
// to dereference the handle.
unsafe impl<T> Send for Handle<T> {}
unsafe impl<T> Sync for Handle<T> {}
/// Manages the life cycle of instances of type `T`. You can allocate new instances of `T` from
/// the arena. All of the instances managed by this arena will be dropped as a single operation
/// when the arena itself is dropped.
pub struct Arena<T> {
items: Vec<MaybeUninit<T>>,
}
impl<T> Drop for Arena<T> {
fn drop(&mut self) {
unsafe {
let items = std::mem::transmute::<_, &mut [T]>(&mut self.items[1..]) as *mut [T];
items.drop_in_place();
}
}
}
impl<T> Arena<T> {
/// Creates a new arena.
pub fn new() -> Arena<T> {
Arena {
items: vec![MaybeUninit::uninit()],
}
}
/// Clear the arena, keeping underlying allocated capacity. After this, all previous handles into
/// the arena are invalid.
#[inline(always)]
pub fn clear(&mut self) {
self.items.truncate(1);
}
/// Adds a new instance to this arena, returning a stable handle to it.
///
/// Note that we do not deduplicate instances of `T` in any way. If you add two instances that
/// have the same content, you will get distinct handles for each one.
pub fn add(&mut self, item: T) -> Handle<T> {
let index = self.items.len() as u32;
self.items.push(MaybeUninit::new(item));
Handle::new(unsafe { NonZeroU32::new_unchecked(index) })
}
/// Dereferences a handle to an instance owned by this arena, returning a reference to it.
pub fn get(&self, handle: Handle<T>) -> &T {
unsafe { std::mem::transmute(&self.items[handle.as_usize()]) }
}
///
/// Dereferences a handle to an instance owned by this arena, returning a mutable reference to
/// it.
pub fn get_mut(&mut self, handle: Handle<T>) -> &mut T {
unsafe { std::mem::transmute(&mut self.items[handle.as_usize()]) }
}
/// Returns an iterator of all of the handles in this arena. (Note that this iterator does not
/// retain a reference to the arena!)
pub fn iter_handles(&self) -> impl Iterator<Item = Handle<T>> {
(1..self.items.len())
.into_iter()
.map(|index| Handle::new(unsafe { NonZeroU32::new_unchecked(index as u32) }))
}
/// Returns a pointer to this arena's storage.
pub(crate) fn as_ptr(&self) -> *const T {
self.items.as_ptr() as *const T
}
/// Returns the number of instances stored in this arena.
#[inline(always)]
pub fn len(&self) -> usize {
self.items.len()
}
}
//-------------------------------------------------------------------------------------------------
// Supplemental arenas
/// A supplemental arena lets you store additional data about some data type that is itself stored
/// in an [`Arena`][].
///
/// We implement `Index` and `IndexMut` for a more ergonomic syntax. Please note that when
/// indexing in an _immutable_ context, we **_panic_** if you try to access data for a handle that
/// doesn't exist in the arena. (Use the [`get`][] method if you don't know whether the value
/// exists or not.) In a _mutable_ context, we automatically create a `Default` instance of the
/// type if there isn't already an instance for that handle in the arena.
///
/// ```
/// # use stack_graphs::arena::Arena;
/// # use stack_graphs::arena::SupplementalArena;
/// // We need an Arena to create handles.
/// let mut arena = Arena::<u32>::new();
/// let handle = arena.add(1);
///
/// let mut supplemental = SupplementalArena::<u32, String>::new();
///
/// // But indexing will panic if the element doesn't already exist.
/// // assert_eq!(supplemental[handle].as_str(), "");
///
/// // The `get` method is always safe, since it returns an Option.
/// assert_eq!(supplemental.get(handle), None);
///
/// // Once we've added the element to the supplemental arena, indexing
/// // won't panic anymore.
/// supplemental[handle] = "hello".to_string();
/// assert_eq!(supplemental[handle].as_str(), "hello");
/// ```
///
/// [`Arena`]: struct.Arena.html
/// [`get`]: #method.get
pub struct SupplementalArena<H, T> {
items: Vec<MaybeUninit<T>>,
_phantom: PhantomData<H>,
}
impl<H, T> Drop for SupplementalArena<H, T> {
fn drop(&mut self) {
unsafe {
let items = std::mem::transmute::<_, &mut [T]>(&mut self.items[1..]) as *mut [T];
items.drop_in_place();
}
}
}
impl<H, T> SupplementalArena<H, T> {
/// Creates a new, empty supplemental arena.
pub fn new() -> SupplementalArena<H, T> {
SupplementalArena {
items: vec![MaybeUninit::uninit()],
_phantom: PhantomData,
}
}
/// Clear the supplemantal arena, keeping underlying allocated capacity. After this,
/// all previous handles into the arena are invalid.
#[inline(always)]
pub fn clear(&mut self) {
self.items.truncate(1);
}
/// Creates a new, empty supplemental arena, preallocating enough space to store supplemental
/// data for all of the instances that have already been allocated in a (regular) arena.
pub fn with_capacity(arena: &Arena<H>) -> SupplementalArena<H, T> {
let mut items = Vec::with_capacity(arena.items.len());
items[0] = MaybeUninit::uninit();
SupplementalArena {
items,
_phantom: PhantomData,
}
}
/// Returns the item belonging to a particular handle, if it exists.
pub fn get(&self, handle: Handle<H>) -> Option<&T> {
self.items
.get(handle.as_usize())
.map(|x| unsafe { &*(x.as_ptr()) })
}
/// Returns a mutable reference to the item belonging to a particular handle, if it exists.
pub fn get_mut(&mut self, handle: Handle<H>) -> Option<&mut T> {
self.items
.get_mut(handle.as_usize())
.map(|x| unsafe { &mut *(x.as_mut_ptr()) })
}
/// Returns a pointer to this arena's storage.
pub(crate) fn as_ptr(&self) -> *const T {
self.items.as_ptr() as *const T
}
/// Returns the number of instances stored in this arena.
#[inline(always)]
pub fn len(&self) -> usize {
self.items.len()
}
/// Iterate over the items in this arena.
pub(crate) fn iter(&self) -> impl Iterator<Item = (Handle<T>, &T)> {
self.items
.iter()
.enumerate()
.skip(1)
.map(|(i, x)| (Handle::from_some(i as u32), unsafe { &*(x.as_ptr()) }))
}
}
impl<H, T> SupplementalArena<H, T>
where
T: Default,
{
/// Returns a mutable reference to the item belonging to a particular handle, creating it first
/// (using the type's `Default` implementation) if it doesn't already exist.
pub fn get_mut_or_default(&mut self, handle: Handle<H>) -> &mut T {
let index = handle.as_usize();
if self.items.len() <= index {
self.items
.resize_with(index + 1, || MaybeUninit::new(T::default()));
}
unsafe { std::mem::transmute(&mut self.items[handle.as_usize()]) }
}
}
impl<H, T> Default for SupplementalArena<H, T> {
fn default() -> SupplementalArena<H, T> {
SupplementalArena::new()
}
}
impl<H, T> Index<Handle<H>> for SupplementalArena<H, T> {
type Output = T;
fn index(&self, handle: Handle<H>) -> &T {
unsafe { std::mem::transmute(&self.items[handle.as_usize()]) }
}
}
impl<H, T> IndexMut<Handle<H>> for SupplementalArena<H, T>
where
T: Default,
{
fn index_mut(&mut self, handle: Handle<H>) -> &mut T {
self.get_mut_or_default(handle)
}
}
//-------------------------------------------------------------------------------------------------
// Handle sets
/// Contains a set of handles, encoded efficiently using a bit set.
#[repr(C)]
pub struct HandleSet<T> {
elements: BitVec<u32, bitvec::order::Lsb0>,
_phantom: PhantomData<T>,
}
impl<T> HandleSet<T> {
/// Creates a new, empty handle set.
pub fn new() -> HandleSet<T> {
HandleSet::default()
}
/// Removes all elements from this handle set.
pub fn clear(&mut self) {
self.elements.clear();
}
/// Returns whether this set contains a particular handle.
pub fn contains(&self, handle: Handle<T>) -> bool {
let index = handle.as_usize();
self.elements.get(index).map(|bit| *bit).unwrap_or(false)
}
/// Adds a handle to this set.
pub fn add(&mut self, handle: Handle<T>) {
let index = handle.as_usize();
if self.elements.len() <= index {
self.elements.resize(index + 1, false);
}
let mut bit = unsafe { self.elements.get_unchecked_mut(index) };
*bit = true;
}
/// Removes a handle from this set.
pub fn remove(&mut self, handle: Handle<T>) {
let index = handle.as_usize();
if let Some(mut bit) = self.elements.get_mut(index) {
*bit = false;
}
}
/// Returns an iterator of all of the handles in this set.
pub fn iter(&self) -> impl Iterator<Item = Handle<T>> + '_ {
self.elements
.iter_ones()
.map(|index| Handle::new(unsafe { NonZeroU32::new_unchecked(index as u32) }))
}
/// Returns a pointer to this set's storage.
pub(crate) fn as_ptr(&self) -> *const u32 {
self.elements.as_bitptr().pointer()
}
/// Returns the number of instances stored in this arena.
#[inline(always)]
pub(crate) fn len(&self) -> usize {
self.elements.as_raw_slice().len()
}
}
impl<T> Default for HandleSet<T> {
fn default() -> HandleSet<T> {
HandleSet {
elements: BitVec::default(),
_phantom: PhantomData,
}
}
}
//-------------------------------------------------------------------------------------------------
// Arena-allocated lists
/// An arena-allocated singly-linked list.
///
/// Linked lists are often a poor choice because they aren't very cache-friendly. However, this
/// linked list implementation _should_ be cache-friendly, since the individual cells are allocated
/// out of an arena.
#[repr(C)]
#[derive(Niche)]
pub struct List<T> {
// The value of this handle will be EMPTY_LIST_HANDLE if the list is empty. For an
// Option<List<T>>, the value will be zero (via the Option<NonZero> optimization) if the list
// is None.
#[niche]
cells: Handle<ListCell<T>>,
}
#[doc(hidden)]
#[repr(C)]
pub struct ListCell<T> {
head: T,
// The value of this handle will be EMPTY_LIST_HANDLE if this is the last element of the list.
tail: Handle<ListCell<T>>,
}
const EMPTY_LIST_HANDLE: NonZeroU32 = unsafe { NonZeroU32::new_unchecked(u32::MAX) };
// An arena that's used to manage `List<T>` instances.
//
// (Note that the arena doesn't store `List<T>` itself; it stores the `ListCell<T>`s that the lists
// are made of.)
pub type ListArena<T> = Arena<ListCell<T>>;
impl<T> List<T> {
/// Creates a new `ListArena` that will manage lists of this type.
pub fn new_arena() -> ListArena<T> {
ListArena::new()
}
/// Returns whether this list is empty.
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.cells.index == EMPTY_LIST_HANDLE
}
/// Returns an empty list.
pub fn empty() -> List<T> {
List {
cells: Handle::new(EMPTY_LIST_HANDLE),
}
}
pub fn from_handle(handle: Handle<ListCell<T>>) -> List<T> {
List { cells: handle }
}
/// Returns a handle to the head of the list.
pub fn handle(&self) -> Handle<ListCell<T>> {
self.cells
}
/// Pushes a new element onto the front of this list.
pub fn push_front(&mut self, arena: &mut ListArena<T>, head: T) {
self.cells = arena.add(ListCell {
head,
tail: self.cells,
});
}
/// Removes and returns the element at the front of this list. If the list is empty, returns
/// `None`.
pub fn pop_front<'a>(&mut self, arena: &'a ListArena<T>) -> Option<&'a T> {
if self.is_empty() {
return None;
}
let cell = arena.get(self.cells);
self.cells = cell.tail;
Some(&cell.head)
}
/// Returns an iterator over the elements of this list.
pub fn iter<'a>(mut self, arena: &'a ListArena<T>) -> impl Iterator<Item = &'a T> + 'a {
std::iter::from_fn(move || self.pop_front(arena))
}
}
impl<T> List<T> {
pub fn equals_with<F>(mut self, arena: &ListArena<T>, mut other: List<T>, mut eq: F) -> bool
where
F: FnMut(&T, &T) -> bool,
{
loop {
if self.cells == other.cells {
return true;
}
if !equals_option(self.pop_front(arena), other.pop_front(arena), &mut eq) {
return false;
}
}
}
pub fn cmp_with<F>(
mut self,
arena: &ListArena<T>,
mut other: List<T>,
mut cmp: F,
) -> std::cmp::Ordering
where
F: FnMut(&T, &T) -> std::cmp::Ordering,
{
use std::cmp::Ordering;
loop {
if self.cells == other.cells {
return Ordering::Equal;
}
match cmp_option(self.pop_front(arena), other.pop_front(arena), &mut cmp) {
Ordering::Equal => (),
result @ _ => return result,
}
}
}
}
impl<T> List<T>
where
T: Eq,
{
pub fn equals(self, arena: &ListArena<T>, other: List<T>) -> bool {
self.equals_with(arena, other, |a, b| *a == *b)
}
}
impl<T> List<T>
where
T: Ord,
{
pub fn cmp(self, arena: &ListArena<T>, other: List<T>) -> std::cmp::Ordering {
self.cmp_with(arena, other, |a, b| a.cmp(b))
}
}
// Normally we would #[derive] all of these traits, but the auto-derived implementations all
// require that T implement the trait as well. We don't store any real instances of T inside of
// List, so our implementations do _not_ require that.
impl<T> Clone for List<T> {
fn clone(&self) -> List<T> {
List { cells: self.cells }
}
}
impl<T> Copy for List<T> {}
//-------------------------------------------------------------------------------------------------
// Reversible arena-allocated list
/// An arena-allocated list that can be reversed.
///
/// Well, that is, you can reverse a [`List`][] just fine by yourself. This type takes care of
/// doing that for you, and importantly, _saves the result_ so that if you only have to compute the
/// reversal once even if you need to access it multiple times.
///
/// [`List`]: struct.List.html
#[repr(C)]
#[derive(Niche)]
pub struct ReversibleList<T> {
#[niche]
cells: Handle<ReversibleListCell<T>>,
}
#[repr(C)]
#[doc(hidden)]
pub struct ReversibleListCell<T> {
head: T,
tail: Handle<ReversibleListCell<T>>,
reversed: Cell<Option<Handle<ReversibleListCell<T>>>>,
}
// An arena that's used to manage `ReversibleList<T>` instances.
//
// (Note that the arena doesn't store `ReversibleList<T>` itself; it stores the
// `ReversibleListCell<T>`s that the lists are made of.)
pub type ReversibleListArena<T> = Arena<ReversibleListCell<T>>;
impl<T> ReversibleList<T> {
/// Creates a new `ReversibleListArena` that will manage lists of this type.
pub fn new_arena() -> ReversibleListArena<T> {
ReversibleListArena::new()
}
/// Returns whether this list is empty.
#[inline(always)]
pub fn is_empty(&self) -> bool {
ReversibleListCell::is_empty_handle(self.cells)
}
/// Returns an empty list.
pub fn empty() -> ReversibleList<T> {
ReversibleList {
cells: ReversibleListCell::empty_handle(),
}
}
/// Returns whether we have already calculated the reversal of this list.
pub fn have_reversal(&self, arena: &ReversibleListArena<T>) -> bool {
if self.is_empty() {
// The empty list is already reversed.
return true;
}
arena.get(self.cells).reversed.get().is_some()
}
/// Pushes a new element onto the front of this list.
pub fn push_front(&mut self, arena: &mut ReversibleListArena<T>, head: T) {
self.cells = arena.add(ReversibleListCell::new(head, self.cells, None));
}
/// Removes and returns the element at the front of this list. If the list is empty, returns
/// `None`.
pub fn pop_front<'a>(&mut self, arena: &'a ReversibleListArena<T>) -> Option<&'a T> {
if self.is_empty() {
return None;
}
let cell = arena.get(self.cells);
self.cells = cell.tail;
Some(&cell.head)
}
/// Returns an iterator over the elements of this list.
pub fn iter<'a>(
mut self,
arena: &'a ReversibleListArena<T>,
) -> impl Iterator<Item = &'a T> + 'a {
std::iter::from_fn(move || self.pop_front(arena))
}
}
impl<T> ReversibleList<T>
where
T: Clone,
{
/// Reverses the list. Since we're already caching everything in an arena, we make sure to
/// only calculate the reversal once, returning it as-is if you call this function multiple
/// times.
pub fn reverse(&mut self, arena: &mut ReversibleListArena<T>) {
if self.is_empty() {
return;
}
self.ensure_reversal_available(arena);
self.cells = arena.get(self.cells).reversed.get().unwrap();
}
/// Ensures that the reversal of this list is available. It can be useful to precalculate this
/// when you have mutable access to the arena, so that you can then reverse and un-reverse the
/// list later when you only have shared access to it.
pub fn ensure_reversal_available(&mut self, arena: &mut ReversibleListArena<T>) {
// First check to see if the list has already been reversed.
if self.is_empty() {
// The empty list is already reversed.
return;
}
if arena.get(self.cells).reversed.get().is_some() {
return;
}
// If not, reverse the list and cache the result.
let new_reversed = ReversibleListCell::reverse(self.cells, arena);
arena.get(self.cells).reversed.set(Some(new_reversed));
}
}
impl<T> ReversibleList<T> {
/// Reverses the list, assuming that the reversal has already been computed. If it hasn't we
/// return an error.
pub fn reverse_reused(&mut self, arena: &ReversibleListArena<T>) -> Result<(), ()> {
if self.is_empty() {
// The empty list is already reversed.
return Ok(());
}
self.cells = arena.get(self.cells).reversed.get().ok_or(())?;
Ok(())
}
}
impl<T> ReversibleListCell<T> {
fn new(
head: T,
tail: Handle<ReversibleListCell<T>>,
reversed: Option<Handle<ReversibleListCell<T>>>,
) -> ReversibleListCell<T> {
ReversibleListCell {
head,
tail,
reversed: Cell::new(reversed),
}
}
fn empty_handle() -> Handle<ReversibleListCell<T>> {
Handle::new(EMPTY_LIST_HANDLE)
}
fn is_empty_handle(handle: Handle<ReversibleListCell<T>>) -> bool {
handle.index == EMPTY_LIST_HANDLE
}
}
impl<T> ReversibleListCell<T>
where
T: Clone,
{
fn reverse(
forwards: Handle<ReversibleListCell<T>>,
arena: &mut ReversibleListArena<T>,
) -> Handle<ReversibleListCell<T>> {
let mut reversed = ReversibleListCell::empty_handle();
let mut current = forwards;
while !ReversibleListCell::is_empty_handle(current) {
let cell = arena.get(current);
let head = cell.head.clone();
current = cell.tail;
reversed = arena.add(Self::new(
head,
reversed,
// The reversal of the reversal that we just calculated is our original list! Go
// ahead and cache that away preemptively.
if ReversibleListCell::is_empty_handle(current) {
Some(forwards)
} else {
None
},
));
}
reversed
}
}
impl<T> ReversibleList<T> {
pub fn equals_with<F>(
mut self,
arena: &ReversibleListArena<T>,
mut other: ReversibleList<T>,
mut eq: F,
) -> bool
where
F: FnMut(&T, &T) -> bool,
{
loop {
if self.cells == other.cells {
return true;
}
if !equals_option(self.pop_front(arena), other.pop_front(arena), &mut eq) {
return false;
}
}
}
pub fn cmp_with<F>(
mut self,
arena: &ReversibleListArena<T>,
mut other: ReversibleList<T>,
mut cmp: F,
) -> std::cmp::Ordering
where
F: FnMut(&T, &T) -> std::cmp::Ordering,
{
use std::cmp::Ordering;
loop {
if self.cells == other.cells {
return Ordering::Equal;
}
match cmp_option(self.pop_front(arena), other.pop_front(arena), &mut cmp) {
Ordering::Equal => (),
result @ _ => return result,
}
}
}
}
impl<T> ReversibleList<T>
where
T: Eq,
{
pub fn equals(self, arena: &ReversibleListArena<T>, other: ReversibleList<T>) -> bool {
self.equals_with(arena, other, |a, b| *a == *b)
}
}
impl<T> ReversibleList<T>
where
T: Ord,
{
pub fn cmp(
self,
arena: &ReversibleListArena<T>,
other: ReversibleList<T>,
) -> std::cmp::Ordering {
self.cmp_with(arena, other, |a, b| a.cmp(b))
}
}
// Normally we would #[derive] all of these traits, but the auto-derived implementations all
// require that T implement the trait as well. We don't store any real instances of T inside of
// ReversibleList, so our implementations do _not_ require that.
impl<T> Clone for ReversibleList<T> {
fn clone(&self) -> ReversibleList<T> {
ReversibleList { cells: self.cells }
}
}
impl<T> Copy for ReversibleList<T> {}
//-------------------------------------------------------------------------------------------------
// Arena-allocated deque
/// An arena-allocated deque.
///
/// Under the covers, this is implemented as a [`List`][]. Because these lists are singly-linked,
/// we can only add elements to, and remove them from, one side of the list.
///
/// To handle this, each deque stores its contents either _forwards_ or _backwards_. We
/// automatically shift between these two representations as needed, depending on the requirements
/// of each method.
///
/// Note that we cache the result of reversing the list, so it should be quick to switch back and
/// forth between representations _as long as you have not added any additional elements to the
/// deque_! If performance is critical, you should ensure that you don't call methods in a pattern
/// that causes the deque to reverse itself each time you add an element.
///
/// [`List`]: struct.List.html
#[repr(C)]
#[derive(Niche)]
pub struct Deque<T> {
#[niche]
list: ReversibleList<T>,
direction: DequeDirection,
}
#[repr(C)]
#[derive(Clone, Copy, Eq, Hash, Ord, PartialEq, PartialOrd)]
enum DequeDirection {
Forwards,
Backwards,
}
impl std::ops::Not for DequeDirection {
type Output = DequeDirection;
fn not(self) -> DequeDirection {
match self {
DequeDirection::Forwards => DequeDirection::Backwards,
DequeDirection::Backwards => DequeDirection::Forwards,
}
}
}
// An arena that's used to manage `Deque<T>` instances.
pub type DequeArena<T> = ReversibleListArena<T>;
impl<T> Deque<T> {
/// Creates a new `DequeArena` that will manage deques of this type.
pub fn new_arena() -> DequeArena<T> {
ReversibleList::new_arena()
}
/// Returns whether this deque is empty.
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.list.is_empty()
}
/// Returns an empty deque.
pub fn empty() -> Deque<T> {
Deque {
list: ReversibleList::empty(),
// A philosophical question for you: is the empty list forwards or backwards? It
// doesn't really matter which one we choose here; if we immediately start pushing onto
// the back, we'll "reverse" the current list before proceeding, but reversing the
// empty list is a no-op.
direction: DequeDirection::Forwards,
}
}
/// Returns whether we have already calculated the reversal of this deque.
pub fn have_reversal(&self, arena: &DequeArena<T>) -> bool {
self.list.have_reversal(arena)
}
fn is_backwards(&self) -> bool {
matches!(self.direction, DequeDirection::Backwards)
}
fn is_forwards(&self) -> bool {
matches!(self.direction, DequeDirection::Forwards)
}
/// Returns an iterator over the contents of this deque, with no guarantee about the ordering of
/// the elements. (By not caring about the ordering of the elements, you can call this method
/// regardless of which direction the deque's elements are currently stored. And that, in
/// turn, means that we only need shared access to the arena, and not mutable access to it.)
pub fn iter_unordered<'a>(&self, arena: &'a DequeArena<T>) -> impl Iterator<Item = &'a T> + 'a {
self.list.iter(arena)
}
}
impl<T> Deque<T>
where
T: Clone,
{
/// Ensures that this deque has computed its backwards-facing list of elements.
pub fn ensure_backwards(&mut self, arena: &mut DequeArena<T>) {
if self.is_backwards() {
return;
}
self.list.reverse(arena);
self.direction = DequeDirection::Backwards;
}
/// Ensures that this deque has computed its forwards-facing list of elements.
pub fn ensure_forwards(&mut self, arena: &mut DequeArena<T>) {
if self.is_forwards() {
return;
}
self.list.reverse(arena);
self.direction = DequeDirection::Forwards;
}
/// Pushes a new element onto the front of this deque.
pub fn push_front(&mut self, arena: &mut DequeArena<T>, element: T) {
self.ensure_forwards(arena);
self.list.push_front(arena, element);
}
/// Pushes a new element onto the back of this deque.
pub fn push_back(&mut self, arena: &mut DequeArena<T>, element: T) {
self.ensure_backwards(arena);
self.list.push_front(arena, element);
}
/// Removes and returns the element from the front of this deque. If the deque is empty,
/// returns `None`.
pub fn pop_front<'a>(&mut self, arena: &'a mut DequeArena<T>) -> Option<&'a T> {
self.ensure_forwards(arena);
self.list.pop_front(arena)
}
/// Removes and returns the element from the back of this deque. If the deque is empty,
/// returns `None`.
pub fn pop_back<'a>(&mut self, arena: &'a mut DequeArena<T>) -> Option<&'a T> {
self.ensure_backwards(arena);
self.list.pop_front(arena)
}
/// Returns an iterator over the contents of this deque in a forwards direction.
pub fn iter<'a>(&self, arena: &'a mut DequeArena<T>) -> impl Iterator<Item = &'a T> + 'a {
let mut list = self.list;
if self.is_backwards() {
list.reverse(arena);
}
list.iter(arena)
}
/// Returns an iterator over the contents of this deque in a backwards direction.
pub fn iter_reversed<'a>(
&self,
arena: &'a mut DequeArena<T>,
) -> impl Iterator<Item = &'a T> + 'a {
let mut list = self.list;
if self.is_forwards() {
list.reverse(arena);
}
list.iter(arena)
}
/// Ensures that both deques are stored in the same direction. It doesn't matter _which_
/// direction, as long as they're the same, so do the minimum amount of work to bring this
/// about. (In particular, if we've already calculated the reversal of one of the deques,
/// reverse that one.)
fn ensure_same_direction(&mut self, arena: &mut DequeArena<T>, other: &mut Deque<T>) {
if self.direction == other.direction {
return;
}
if self.list.have_reversal(arena) {
self.list.reverse(arena);
self.direction = !self.direction;
} else {
other.list.reverse(arena);
other.direction = !other.direction;
}
}
}
impl<T> Deque<T>
where
T: Clone,
{
pub fn equals_with<F>(mut self, arena: &mut DequeArena<T>, mut other: Deque<T>, eq: F) -> bool
where
F: FnMut(&T, &T) -> bool,
{
self.ensure_same_direction(arena, &mut other);
self.list.equals_with(arena, other.list, eq)
}
pub fn cmp_with<F>(
mut self,
arena: &mut DequeArena<T>,
mut other: Deque<T>,
cmp: F,
) -> std::cmp::Ordering
where
F: FnMut(&T, &T) -> std::cmp::Ordering,
{
// To compare, we need boths deques to specifically be pointing forwards, and not just in
// the same direction, so that we get the lexicographic comparison correct.
self.ensure_forwards(arena);
other.ensure_forwards(arena);
self.list.cmp_with(arena, other.list, cmp)
}
}
impl<T> Deque<T>
where
T: Clone + Eq,
{
pub fn equals(self, arena: &mut DequeArena<T>, other: Deque<T>) -> bool {
self.equals_with(arena, other, |a, b| *a == *b)
}
}
impl<T> Deque<T>
where
T: Clone + Ord,
{
pub fn cmp(self, arena: &mut DequeArena<T>, other: Deque<T>) -> std::cmp::Ordering {
self.cmp_with(arena, other, |a, b| a.cmp(b))
}
}
impl<T> Deque<T> {
/// Returns an iterator over the contents of this deque in a forwards direction, assuming that
/// we have already computed its forwards-facing list of elements via [`ensure_forwards`][].
/// Panics if we haven't already computed it.
///
/// [`ensure_forwards`]: #method.ensure_forwards
pub fn iter_reused<'a>(&self, arena: &'a DequeArena<T>) -> impl Iterator<Item = &'a T> + 'a {
let mut list = self.list;
if self.is_backwards() {
list.reverse_reused(arena)
.expect("Forwards deque hasn't been calculated");
}
list.iter(arena)
}
/// Returns an iterator over the contents of this deque in a backwards direction, assuming that
/// we have already computed its backwards-facing list of elements via [`ensure_backwards`][].
/// Panics if we haven't already computed it.
///
/// [`ensure_backwards`]: #method.ensure_backwards
pub fn iter_reversed_reused<'a>(
&self,
arena: &'a DequeArena<T>,
) -> impl Iterator<Item = &'a T> + 'a {
let mut list = self.list;
if self.is_forwards() {
list.reverse_reused(arena)
.expect("Backwards deque hasn't been calculated");
}
list.iter(arena)
}
}
// Normally we would #[derive] all of these traits, but the auto-derived implementations all
// require that T implement the trait as well. We don't store any real instances of T inside of
// Deque, so our implementations do _not_ require that.
impl<T> Clone for Deque<T> {
fn clone(&self) -> Deque<T> {
Deque {
list: self.list,
direction: self.direction,
}
}
}
impl<T> Copy for Deque<T> {}