1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
// -*- coding: utf-8 -*-
// ------------------------------------------------------------------------------------------------
// Copyright © 2021, stack-graphs authors.
// Licensed under either of Apache License, Version 2.0, or MIT license, at your option.
// Please see the LICENSE-APACHE or LICENSE-MIT files in this distribution for license details.
// ------------------------------------------------------------------------------------------------

//! Paths represent name bindings in a source language.
//!
//! With the set of rules we have for constructing stack graphs, bindings between references and
//! definitions are represented by paths within the graph.  Each edge in the path must leave the
//! symbol and scopes stacks in a valid state — otherwise we have violated some name binding rule
//! in the source language.  The symbol and scope stacks must be empty at the beginning and end of
//! the path.  The reference's _push symbol_ node "seeds" the symbol stack with the first thing
//! that we want to look for, and once we (hopefully) reach the definition that reference refers
//! to, its pop node will remove that symbol from the symbol stack, leaving both stacks empty.

use std::collections::VecDeque;
use std::fmt::Display;

use controlled_option::ControlledOption;
use controlled_option::Niche;

use crate::arena::Deque;
use crate::arena::DequeArena;
use crate::arena::Handle;
use crate::arena::List;
use crate::arena::ListArena;
use crate::cycles::CycleDetector;
use crate::graph::Edge;
use crate::graph::Node;
use crate::graph::NodeID;
use crate::graph::StackGraph;
use crate::graph::Symbol;
use crate::utils::cmp_option;
use crate::utils::equals_option;
use crate::CancellationError;
use crate::CancellationFlag;

//-------------------------------------------------------------------------------------------------
// Displaying stuff

/// This trait only exists because:
///
///   - we need `Display` implementations that dereference arena handles from our `StackGraph` and
///     `Paths` bags o' crap,
///   - many of our arena-managed types can handles to _other_ arena-managed data, which we need to
///     recursively display as part of displaying the "outer" instance, and
///   - in particular, we sometimes need `&mut` access to the `Paths` arenas.
///
/// The borrow checker is not very happy with us having all of these constraints at the same time —
/// in particular, the last one.
///
/// This trait gets around the problem by breaking up the display operation into two steps:
///
///   - First, each data instance has a chance to "prepare" itself with `&mut` access to whatever
///     arenas it needs.  (Anything containing a `Deque`, for instance, uses this step to ensure
///     that our copy of the deque is pointed in the right direction, since reversing requires
///     `&mut` access to the arena.)
///
///   - Once everything has been prepared, we return a value that implements `Display`, and
///     contains _non-mutable_ references to the arena.  Because our arena references are
///     non-mutable, we don't run into any problems with the borrow checker while recursively
///     displaying the contents of the data instance.
trait DisplayWithPaths {
    fn prepare(&mut self, _graph: &StackGraph, _paths: &mut Paths) {}

    fn display_with(
        &self,
        graph: &StackGraph,
        paths: &Paths,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result;
}

/// Prepares and returns a `Display` implementation for a type `D` that implements
/// `DisplayWithPaths`.  We only require `&mut` access to the `PartialPath` arenas while
/// creating the `Display` instance; the `Display` instance itself will only retain shared access
/// to the arenas.
fn display_with<'a, D>(
    mut value: D,
    graph: &'a StackGraph,
    paths: &'a mut Paths,
) -> impl Display + 'a
where
    D: DisplayWithPaths + 'a,
{
    value.prepare(graph, paths);
    DisplayWithPathsWrapper {
        value,
        graph,
        paths,
    }
}

/// Returns a `Display` implementation that you can use inside of your `display_with` method to
/// display any recursive fields.  This assumes that the recursive fields have already been
/// prepared.
fn display_prepared<'a, D>(value: D, graph: &'a StackGraph, paths: &'a Paths) -> impl Display + 'a
where
    D: DisplayWithPaths + 'a,
{
    DisplayWithPathsWrapper {
        value,
        graph,
        paths,
    }
}

#[doc(hidden)]
struct DisplayWithPathsWrapper<'a, D> {
    value: D,
    graph: &'a StackGraph,
    paths: &'a Paths,
}

impl<'a, D> Display for DisplayWithPathsWrapper<'a, D>
where
    D: DisplayWithPaths,
{
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        self.value.display_with(self.graph, self.paths, f)
    }
}

//-------------------------------------------------------------------------------------------------
// Symbol stacks

/// A symbol with a possibly empty list of exported scopes attached to it.
#[repr(C)]
#[derive(Clone, Copy)]
pub struct ScopedSymbol {
    pub symbol: Handle<Symbol>,
    pub scopes: ControlledOption<ScopeStack>,
}

impl ScopedSymbol {
    pub fn equals(&self, paths: &Paths, other: &ScopedSymbol) -> bool {
        self.symbol == other.symbol
            && equals_option(
                self.scopes.into_option(),
                other.scopes.into_option(),
                |a, b| a.equals(paths, &b),
            )
    }

    pub fn cmp(
        &self,
        graph: &StackGraph,
        paths: &Paths,
        other: &ScopedSymbol,
    ) -> std::cmp::Ordering {
        std::cmp::Ordering::Equal
            .then_with(|| graph[self.symbol].cmp(&graph[other.symbol]))
            .then_with(|| {
                cmp_option(
                    self.scopes.into_option(),
                    other.scopes.into_option(),
                    |a, b| a.cmp(paths, &b),
                )
            })
    }

    pub fn display<'a>(self, graph: &'a StackGraph, paths: &'a mut Paths) -> impl Display + 'a {
        display_with(self, graph, paths)
    }
}

impl DisplayWithPaths for ScopedSymbol {
    fn prepare(&mut self, graph: &StackGraph, paths: &mut Paths) {
        if let Some(mut scopes) = self.scopes.into_option() {
            scopes.prepare(graph, paths);
            self.scopes = scopes.into();
        }
    }

    fn display_with(
        &self,
        graph: &StackGraph,
        paths: &Paths,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match self.scopes.into_option() {
            Some(scopes) => write!(
                f,
                "{}/({})",
                self.symbol.display(graph),
                display_prepared(scopes, graph, paths),
            ),
            None => write!(f, "{}", self.symbol.display(graph)),
        }
    }
}

/// A sequence of symbols that describe what we are currently looking for while in the middle of
/// the path-finding algorithm.
#[repr(C)]
#[derive(Clone, Copy, Niche)]
pub struct SymbolStack {
    #[niche]
    list: List<ScopedSymbol>,
    length: u32,
}

impl SymbolStack {
    /// Returns whether this symbol stack is empty.
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.list.is_empty()
    }

    #[inline(always)]
    pub fn len(&self) -> usize {
        self.length as usize
    }

    /// Returns an empty symbol stack.
    pub fn empty() -> SymbolStack {
        SymbolStack {
            list: List::empty(),
            length: 0,
        }
    }

    pub fn equals(&self, paths: &Paths, other: &SymbolStack) -> bool {
        self.list
            .equals_with(&paths.symbol_stacks, other.list, |a, b| a.equals(paths, b))
    }

    pub fn cmp(
        &self,
        graph: &StackGraph,
        paths: &Paths,
        other: &SymbolStack,
    ) -> std::cmp::Ordering {
        self.list
            .cmp_with(&paths.symbol_stacks, other.list, |a, b| {
                a.cmp(graph, paths, b)
            })
    }

    /// Pushes a new [`ScopedSymbol`][] onto the front of this symbol stack.
    ///
    /// [`ScopedSymbol`]: struct.ScopedSymbol.html
    pub fn push_front(&mut self, paths: &mut Paths, scoped_symbol: ScopedSymbol) {
        self.length += 1;
        self.list
            .push_front(&mut paths.symbol_stacks, scoped_symbol);
    }

    /// Removes and returns the [`ScopedSymbol`][] at the front of this symbol stack.  If the stack
    /// is empty, returns `None`.
    pub fn pop_front(&mut self, paths: &Paths) -> Option<ScopedSymbol> {
        let result = self.list.pop_front(&paths.symbol_stacks).copied();
        if result.is_some() {
            self.length -= 1;
        }
        result
    }

    pub fn display<'a>(self, graph: &'a StackGraph, paths: &'a mut Paths) -> impl Display + 'a {
        display_with(self, graph, paths)
    }

    pub fn iter<'a>(&'a self, paths: &'a Paths) -> impl Iterator<Item = ScopedSymbol> + 'a {
        self.list.iter(&paths.symbol_stacks).copied()
    }
}

impl DisplayWithPaths for SymbolStack {
    fn prepare(&mut self, graph: &StackGraph, paths: &mut Paths) {
        let stack = self;
        while let Some(mut symbol) = stack.pop_front(paths) {
            symbol.prepare(graph, paths);
        }
    }

    fn display_with(
        &self,
        graph: &StackGraph,
        paths: &Paths,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        for symbol in self.iter(paths) {
            symbol.display_with(graph, paths, f)?;
        }
        Ok(())
    }
}

//-------------------------------------------------------------------------------------------------
// Scope stacks

/// A sequence of exported scopes, used to pass name-binding context around a stack graph.
#[repr(C)]
#[derive(Clone, Copy, Niche)]
pub struct ScopeStack {
    #[niche]
    list: List<Handle<Node>>,
    length: u32,
}

impl ScopeStack {
    /// Returns whether this scope stack is empty.
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.list.is_empty()
    }

    #[inline(always)]
    pub fn len(&self) -> usize {
        self.length as usize
    }

    /// Returns an empty scope stack.
    pub fn empty() -> ScopeStack {
        ScopeStack {
            list: List::empty(),
            length: 0,
        }
    }

    pub fn equals(&self, paths: &Paths, other: &ScopeStack) -> bool {
        self.list
            .equals_with(&paths.scope_stacks, other.list, |a, b| *a == *b)
    }

    pub fn cmp(&self, paths: &Paths, other: &ScopeStack) -> std::cmp::Ordering {
        self.list
            .cmp_with(&paths.scope_stacks, other.list, |a, b| a.cmp(b))
    }

    /// Pushes a new [`Node`][] onto the front of this scope stack.  The node must be an _exported
    /// scope node_.
    ///
    /// [`Node`]: ../graph/enum.Node.html
    pub fn push_front(&mut self, paths: &mut Paths, node: Handle<Node>) {
        self.length += 1;
        self.list.push_front(&mut paths.scope_stacks, node);
    }

    /// Removes and returns the [`Node`][] at the front of this scope stack.  If the stack is
    /// empty, returns `None`.
    pub fn pop_front(&mut self, paths: &Paths) -> Option<Handle<Node>> {
        let result = self.list.pop_front(&paths.scope_stacks).copied();
        if result.is_some() {
            self.length -= 1;
        }
        result
    }

    pub fn display<'a>(self, graph: &'a StackGraph, paths: &'a mut Paths) -> impl Display + 'a {
        display_with(self, graph, paths)
    }

    pub fn iter<'a>(&'a self, paths: &'a Paths) -> impl Iterator<Item = Handle<Node>> + 'a {
        self.list.iter(&paths.scope_stacks).copied()
    }
}

impl DisplayWithPaths for ScopeStack {
    fn display_with(
        &self,
        graph: &StackGraph,
        paths: &Paths,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        for scope in self.iter(paths) {
            write!(f, "{:#}", scope.display(graph))?;
        }
        Ok(())
    }
}

//-------------------------------------------------------------------------------------------------
// Edge lists

/// Details about one of the edges in a name-binding path
#[repr(C)]
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
pub struct PathEdge {
    pub source_node_id: NodeID,
    pub precedence: i32,
}

impl PathEdge {
    /// Returns whether one edge shadows another.  Note that shadowing is not commutative — if path
    /// A shadows path B, the reverse is not true.
    pub fn shadows(self, other: PathEdge) -> bool {
        self.source_node_id == other.source_node_id && self.precedence > other.precedence
    }

    pub fn display<'a>(self, graph: &'a StackGraph, paths: &'a mut Paths) -> impl Display + 'a {
        display_with(self, graph, paths)
    }
}

impl DisplayWithPaths for PathEdge {
    fn display_with(
        &self,
        graph: &StackGraph,
        _paths: &Paths,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match graph.node_for_id(self.source_node_id) {
            Some(node) => write!(f, "{:#}", node.display(graph))?,
            None => write!(f, "[missing]")?,
        }
        if self.precedence != 0 {
            write!(f, "({})", self.precedence)?;
        }
        Ok(())
    }
}

/// The edges in a path keep track of precedence information so that we can correctly handle
/// shadowed definitions.
#[repr(C)]
#[derive(Clone, Copy, Niche)]
pub struct PathEdgeList {
    #[niche]
    edges: Deque<PathEdge>,
    length: u32,
}

impl PathEdgeList {
    /// Returns whether this edge list is empty.
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.edges.is_empty()
    }

    #[inline(always)]
    pub fn len(&self) -> usize {
        self.length as usize
    }

    /// Returns whether this edge list is iterable in both directions without needing mutable
    /// access to the arena.
    pub fn have_reversal(&self, paths: &Paths) -> bool {
        self.edges.have_reversal(&paths.path_edges)
    }

    /// Returns an empty edge list.
    pub fn empty() -> PathEdgeList {
        PathEdgeList {
            edges: Deque::empty(),
            length: 0,
        }
    }

    /// Pushes a new edge onto the front of this edge list.
    pub fn push_front(&mut self, paths: &mut Paths, edge: PathEdge) {
        self.length += 1;
        self.edges.push_front(&mut paths.path_edges, edge);
    }

    /// Pushes a new edge onto the back of this edge list.
    pub fn push_back(&mut self, paths: &mut Paths, edge: PathEdge) {
        self.length += 1;
        self.edges.push_back(&mut paths.path_edges, edge);
    }

    /// Removes and returns the edge at the front of this edge list.  If the list is empty, returns
    /// `None`.
    pub fn pop_front(&mut self, paths: &mut Paths) -> Option<PathEdge> {
        let result = self.edges.pop_front(&mut paths.path_edges);
        if result.is_some() {
            self.length -= 1;
        }
        result.copied()
    }

    /// Removes and returns the edge at the back of this edge list.  If the list is empty, returns
    /// `None`.
    pub fn pop_back(&mut self, paths: &mut Paths) -> Option<PathEdge> {
        let result = self.edges.pop_back(&mut paths.path_edges);
        if result.is_some() {
            self.length -= 1;
        }
        result.copied()
    }

    pub fn display<'a>(self, graph: &'a StackGraph, paths: &'a mut Paths) -> impl Display + 'a {
        display_with(self, graph, paths)
    }

    /// Returns whether one edge list shadows another.  Note that shadowing is not commutative — if
    /// path A shadows path B, the reverse is not true.
    pub fn shadows(mut self, paths: &mut Paths, mut other: PathEdgeList) -> bool {
        while let Some(self_edge) = self.pop_front(paths) {
            if let Some(other_edge) = other.pop_front(paths) {
                if self_edge.shadows(other_edge) {
                    return true;
                }
            } else {
                return false;
            }
        }
        false
    }

    pub fn equals(mut self, paths: &mut Paths, mut other: PathEdgeList) -> bool {
        while let Some(self_edge) = self.pop_front(paths) {
            if let Some(other_edge) = other.pop_front(paths) {
                if self_edge != other_edge {
                    return false;
                }
            } else {
                return false;
            }
        }
        other.edges.is_empty()
    }

    pub fn cmp(mut self, paths: &mut Paths, mut other: PathEdgeList) -> std::cmp::Ordering {
        use std::cmp::Ordering;
        while let Some(self_edge) = self.pop_front(paths) {
            if let Some(other_edge) = other.pop_front(paths) {
                match self_edge.cmp(&other_edge) {
                    Ordering::Equal => continue,
                    result @ _ => return result,
                }
            } else {
                return Ordering::Greater;
            }
        }
        if other.edges.is_empty() {
            Ordering::Equal
        } else {
            Ordering::Less
        }
    }

    /// Returns an iterator over the contents of this edge list.
    pub fn iter<'a>(&self, paths: &'a mut Paths) -> impl Iterator<Item = PathEdge> + 'a {
        self.edges.iter(&mut paths.path_edges).copied()
    }

    /// Returns an iterator over the contents of this edge list, with no guarantee about the
    /// ordering of the elements.
    pub fn iter_unordered<'a>(&self, paths: &'a Paths) -> impl Iterator<Item = PathEdge> + 'a {
        self.edges.iter_unordered(&paths.path_edges).copied()
    }

    /// Ensure the underlying representation is forwards, so that `iter_unordered`
    /// can be used for forwards iteration.
    #[cfg(feature = "json")]
    pub(crate) fn ensure_forwards<'a>(&mut self, paths: &'a mut Paths) {
        self.edges.ensure_forwards(&mut paths.path_edges);
    }
}

impl DisplayWithPaths for PathEdgeList {
    fn prepare(&mut self, graph: &StackGraph, paths: &mut Paths) {
        self.edges.ensure_forwards(&mut paths.path_edges);
        let mut edges = self.edges;
        while let Some(mut edge) = edges.pop_front(&mut paths.path_edges).copied() {
            edge.prepare(graph, paths);
        }
    }

    fn display_with(
        &self,
        graph: &StackGraph,
        paths: &Paths,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        for edge in self.edges.iter_reused(&paths.path_edges) {
            edge.display_with(graph, paths, f)?;
        }
        Ok(())
    }
}

//-------------------------------------------------------------------------------------------------
// Paths

/// A sequence of edges from a stack graph.  A _complete_ path represents a full name binding in a
/// source language.
#[repr(C)]
#[derive(Clone)]
pub struct Path {
    pub start_node: Handle<Node>,
    pub end_node: Handle<Node>,
    pub symbol_stack: SymbolStack,
    pub scope_stack: ScopeStack,
    pub edges: PathEdgeList,
}

impl Path {
    /// Creates a new empty path starting at a stack graph node.  The starting node cannot be a
    /// _pop symbol_ node.
    pub fn from_node(graph: &StackGraph, paths: &mut Paths, node: Handle<Node>) -> Option<Path> {
        let mut symbol_stack = SymbolStack::empty();
        let mut scope_stack = ScopeStack::empty();
        match &graph[node] {
            Node::PushScopedSymbol(node) => {
                let scope = graph.node_for_id(node.scope)?;
                scope_stack.push_front(paths, scope);
                symbol_stack.push_front(
                    paths,
                    ScopedSymbol {
                        symbol: node.symbol,
                        scopes: ControlledOption::some(scope_stack),
                    },
                );
            }
            Node::PushSymbol(node) => {
                symbol_stack.push_front(
                    paths,
                    ScopedSymbol {
                        symbol: node.symbol,
                        scopes: ControlledOption::none(),
                    },
                );
            }
            Node::PopScopedSymbol(_) => return None,
            Node::PopSymbol(_) => return None,
            _ => {}
        };
        Some(Path {
            start_node: node,
            end_node: node,
            symbol_stack,
            scope_stack,
            edges: PathEdgeList::empty(),
        })
    }

    /// Returns whether one path shadows another.  Note that shadowing is not commutative — if path
    /// A shadows path B, the reverse is not true.
    pub fn shadows(&self, paths: &mut Paths, other: &Path) -> bool {
        self.edges.shadows(paths, other.edges)
    }

    pub fn equals(&self, paths: &mut Paths, other: &Path) -> bool {
        self.start_node == other.start_node
            && self.end_node == other.end_node
            && self.symbol_stack.equals(paths, &other.symbol_stack)
            && self.scope_stack.equals(paths, &other.scope_stack)
            && self.edges.equals(paths, other.edges)
    }

    pub fn cmp(&self, graph: &StackGraph, paths: &mut Paths, other: &Path) -> std::cmp::Ordering {
        std::cmp::Ordering::Equal
            .then_with(|| self.start_node.cmp(&other.start_node))
            .then_with(|| self.end_node.cmp(&other.end_node))
            .then_with(|| self.symbol_stack.cmp(graph, paths, &other.symbol_stack))
            .then_with(|| self.scope_stack.cmp(paths, &other.scope_stack))
            .then_with(|| self.edges.cmp(paths, other.edges))
    }

    /// A _complete_ path represents a full name binding that resolves a reference to a definition.
    pub fn is_complete(&self, graph: &StackGraph) -> bool {
        if !graph[self.start_node].is_reference() {
            return false;
        } else if !graph[self.end_node].is_definition() {
            return false;
        } else if !self.symbol_stack.is_empty() {
            return false;
        } else if !self.scope_stack.is_empty() {
            return false;
        } else {
            true
        }
    }

    pub fn display<'a>(&'a self, graph: &'a StackGraph, paths: &'a mut Paths) -> impl Display + 'a {
        display_with(self, graph, paths)
    }
}

impl<'a> DisplayWithPaths for &'a Path {
    fn prepare(&mut self, graph: &StackGraph, paths: &mut Paths) {
        self.symbol_stack.clone().prepare(graph, paths);
        self.scope_stack.clone().prepare(graph, paths);
    }

    fn display_with(
        &self,
        graph: &StackGraph,
        paths: &Paths,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        write!(
            f,
            "{} -> {}",
            self.start_node.display(graph),
            self.end_node.display(graph),
        )?;
        if !self.symbol_stack.is_empty() || !self.scope_stack.is_empty() {
            write!(
                f,
                " <{}> ({})",
                display_prepared(self.symbol_stack, graph, paths),
                display_prepared(self.scope_stack, graph, paths),
            )?;
        }
        Ok(())
    }
}

/// Errors that can occur during the path resolution process.
#[derive(Debug)]
pub enum PathResolutionError {
    /// The path contains a _jump to scope_ node, but there are no scopes on the scope stack to
    /// jump to.
    EmptyScopeStack,
    /// The path contains a _pop symbol_ or _pop scoped symbol_ node, but there are no symbols on
    /// the symbol stack to pop off.
    EmptySymbolStack,
    /// The partial path contains multiple references to a scope stack variable, and those
    /// references can't unify on a single scope stack.
    IncompatibleScopeStackVariables,
    /// The partial path contains multiple references to a symbol stack variable, and those
    /// references can't unify on a single symbol stack.
    IncompatibleSymbolStackVariables,
    /// The partial path contains edges from multiple files.
    IncorrectFile,
    /// The path contains a _pop symbol_ or _pop scoped symbol_ node, but the symbol at the top of
    /// the symbol stack does not match.
    IncorrectPoppedSymbol,
    /// The path contains an edge whose source node does not match the sink node of the preceding
    /// edge.
    IncorrectSourceNode,
    /// The path contains a _pop scoped symbol_ node, but the symbol at the top of the symbol stack
    /// does not have an attached scope list to pop off.
    MissingAttachedScopeList,
    /// The path's scope stack does not satisfy the partial path's scope stack precondition.
    ScopeStackUnsatisfied,
    /// The path's symbol stack does not satisfy the partial path's symbol stack precondition.
    SymbolStackUnsatisfied,
    /// The partial path's postcondition references a symbol stack variable that isn't present in
    /// the precondition.
    UnboundSymbolStackVariable,
    /// The partial path's postcondition references a scope stack variable that isn't present in
    /// the precondition.
    UnboundScopeStackVariable,
    /// The path contains a _pop symbol_ node, but the symbol at the top of the symbol stack has an
    /// attached scope list that we weren't expecting.
    UnexpectedAttachedScopeList,
    /// A _push scoped symbol_ node referes to an exported scope node that doesn't exist.
    UnknownAttachedScope,
}

impl Path {
    /// Attempts to append an edge to the end of a path.  If the edge is not a valid extension of
    /// this path, we return an error describing why.
    pub fn append(
        &mut self,
        graph: &StackGraph,
        paths: &mut Paths,
        edge: Edge,
    ) -> Result<(), PathResolutionError> {
        if edge.source != self.end_node {
            return Err(PathResolutionError::IncorrectSourceNode);
        }

        let sink = &graph[edge.sink];
        if let Node::PushSymbol(sink) = sink {
            let sink_symbol = sink.symbol;
            let scoped_symbol = ScopedSymbol {
                symbol: sink_symbol,
                scopes: ControlledOption::none(),
            };
            self.symbol_stack.push_front(paths, scoped_symbol);
        } else if let Node::PushScopedSymbol(sink) = sink {
            let sink_symbol = sink.symbol;
            let sink_scope = graph
                .node_for_id(sink.scope)
                .ok_or(PathResolutionError::UnknownAttachedScope)?;
            let mut attached_scopes = self.scope_stack;
            attached_scopes.push_front(paths, sink_scope);
            let scoped_symbol = ScopedSymbol {
                symbol: sink_symbol,
                scopes: ControlledOption::some(attached_scopes),
            };
            self.symbol_stack.push_front(paths, scoped_symbol);
        } else if let Node::PopSymbol(sink) = sink {
            let top = match self.symbol_stack.pop_front(paths) {
                Some(top) => top,
                None => return Err(PathResolutionError::EmptySymbolStack),
            };
            if top.symbol != sink.symbol {
                return Err(PathResolutionError::IncorrectPoppedSymbol);
            }
            if top.scopes.is_some() {
                return Err(PathResolutionError::UnexpectedAttachedScopeList);
            }
        } else if let Node::PopScopedSymbol(sink) = sink {
            let top = match self.symbol_stack.pop_front(paths) {
                Some(top) => top,
                None => return Err(PathResolutionError::EmptySymbolStack),
            };
            if top.symbol != sink.symbol {
                return Err(PathResolutionError::IncorrectPoppedSymbol);
            }
            let new_scope_stack = match top.scopes.into_option() {
                Some(scopes) => scopes,
                None => return Err(PathResolutionError::MissingAttachedScopeList),
            };
            self.scope_stack = new_scope_stack;
        } else if let Node::DropScopes(_) = sink {
            self.scope_stack = ScopeStack::empty();
        }

        self.end_node = edge.sink;
        self.edges.push_back(
            paths,
            PathEdge {
                source_node_id: graph[edge.source].id(),
                precedence: edge.precedence,
            },
        );
        Ok(())
    }

    /// Attempts to resolve any _jump to scope_ node at the end of a path.  If the path does not
    /// end in a _jump to scope_ node, we do nothing.  If it does, and we cannot resolve it, then
    /// we return an error describing why.
    pub fn resolve(
        &mut self,
        graph: &StackGraph,
        paths: &mut Paths,
    ) -> Result<(), PathResolutionError> {
        if !graph[self.end_node].is_jump_to() {
            return Ok(());
        }
        let top_scope = match self.scope_stack.pop_front(paths) {
            Some(scope) => scope,
            None => return Err(PathResolutionError::EmptyScopeStack),
        };
        self.edges.push_back(
            paths,
            PathEdge {
                source_node_id: graph[self.end_node].id(),
                precedence: 0,
            },
        );
        self.end_node = top_scope;
        Ok(())
    }

    /// Attempts to extend one path as part of the path-finding algorithm.  When calling this
    /// function, you are responsible for ensuring that `graph` already contains data for all of
    /// the possible edges that we might want to extend `path` with.
    ///
    /// The resulting extended paths will be added to `result`.  We have you pass that in as a
    /// parameter, instead of building it up ourselves, so that you have control over which
    /// particular collection type to use, and so that you can reuse result collections across
    /// multiple calls.
    pub fn extend<R: Extend<Path>>(&self, graph: &StackGraph, paths: &mut Paths, result: &mut R) {
        let extensions = graph.outgoing_edges(self.end_node);
        result.reserve(extensions.size_hint().0);
        for extension in extensions {
            let mut new_path = self.clone();
            // If there are errors adding this edge to the path, or resolving the resulting path,
            // just skip the edge — it's not a fatal error.
            if new_path.append(graph, paths, extension).is_err() {
                continue;
            }
            if new_path.resolve(graph, paths).is_err() {
                continue;
            }
            result.push(new_path);
        }
    }
}

impl Paths {
    /// Finds all paths reachable from a set of starting nodes, calling the `visit` closure for
    /// each one.
    ///
    /// This function will not return until all reachable paths have been processed, so `graph`
    /// must already contain a complete stack graph.  If you have a very large stack graph stored
    /// in some other storage system, and want more control over lazily loading only the necessary
    /// pieces, then you should code up your own loop that calls [`Path::extend`][] manually.
    ///
    /// [`Path::extend`]: struct.Path.html#method.extend
    pub fn find_all_paths<I, F>(
        &mut self,
        graph: &StackGraph,
        starting_nodes: I,
        cancellation_flag: &dyn CancellationFlag,
        mut visit: F,
    ) -> Result<(), CancellationError>
    where
        I: IntoIterator<Item = Handle<Node>>,
        F: FnMut(&StackGraph, &mut Paths, Path),
    {
        let mut cycle_detector = CycleDetector::new();
        let mut queue = starting_nodes
            .into_iter()
            .filter_map(|node| Path::from_node(graph, self, node))
            .collect::<VecDeque<_>>();
        while let Some(path) = queue.pop_front() {
            cancellation_flag.check("finding paths")?;
            if !cycle_detector.should_process_path(&path, |probe| probe.cmp(graph, self, &path)) {
                continue;
            }
            path.extend(graph, self, &mut queue);
            visit(graph, self, path);
        }
        Ok(())
    }
}

/// A collection that can be used to receive the results of the [`Path::extend`][] method.
///
/// Note: There's an [open issue][std-extend] to add these methods to std's `Extend` trait.  If
/// that gets merged, we can drop this trait and use the std one instead.
///
/// [std-extend]: https://github.com/rust-lang/rust/issues/72631
pub trait Extend<T> {
    /// Reserve space for `additional` elements in the collection.
    fn reserve(&mut self, additional: usize);
    /// Add a new element to the collection.
    fn push(&mut self, item: T);
}

impl<T> Extend<T> for Vec<T> {
    fn reserve(&mut self, additional: usize) {
        self.reserve(additional);
    }

    fn push(&mut self, item: T) {
        self.push(item);
    }
}

impl<T> Extend<T> for VecDeque<T> {
    fn reserve(&mut self, additional: usize) {
        self.reserve(additional);
    }

    fn push(&mut self, item: T) {
        self.push_back(item);
    }
}

impl Paths {
    /// Removes any paths that are shadowed by any other path, according to the precedence values
    /// of the edges in the paths.
    pub fn remove_shadowed_paths(
        &mut self,
        paths: &mut Vec<Path>,
        cancellation_flag: &dyn CancellationFlag,
    ) -> Result<(), CancellationError> {
        let mut keep = vec![true; paths.len()];
        for (i, comparator) in paths.iter().enumerate() {
            for (j, other) in paths.iter().enumerate() {
                cancellation_flag.check("path shadowing")?;
                if i == j || !keep[j] {
                    continue;
                }
                if comparator.shadows(self, &other) {
                    keep[j] = false;
                }
            }
        }
        let mut iter = keep.iter().copied();
        paths.retain(|_| iter.next().unwrap());
        Ok(())
    }
}

//-------------------------------------------------------------------------------------------------
// Path resolution state

/// Manages the state of a collection of paths built up as part of the path-finding algorithm.
pub struct Paths {
    pub(crate) scope_stacks: ListArena<Handle<Node>>,
    pub(crate) symbol_stacks: ListArena<ScopedSymbol>,
    pub(crate) path_edges: DequeArena<PathEdge>,
}

impl Paths {
    pub fn new() -> Paths {
        Paths {
            scope_stacks: List::new_arena(),
            symbol_stacks: List::new_arena(),
            path_edges: Deque::new_arena(),
        }
    }
}