1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
use std::{
fmt, io,
io::{Error, ErrorKind, IoSlice, Seek, SeekFrom, Write},
mem::MaybeUninit,
ptr,
};
/// Wraps a writer and buffers its output.
///
/// See [`BufWriter`][std::io::BufWriter] for more details.
///
/// # Examples
///
/// Let's write the numbers one through ten to a [`TcpStream`]:
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::net::TcpStream;
///
/// let mut stream = TcpStream::connect("127.0.0.1:34254").unwrap();
///
/// for i in 0..10 {
/// stream.write(&[i+1]).unwrap();
/// }
/// ```
///
/// Because we're not buffering, we write each one in turn, incurring the
/// overhead of a system call per byte written. We can fix this with a
/// `StackBufWriter<W, N>`:
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::net::TcpStream;
/// use stack_buffer::StackBufWriter;
///
/// let mut stream = StackBufWriter::<_, 8192>::new(TcpStream::connect("127.0.0.1:34254").unwrap());
///
/// for i in 0..10 {
/// stream.write(&[i+1]).unwrap();
/// }
/// stream.flush().unwrap();
/// ```
///
/// By wrapping the stream with a `StackBufWriter<W, N>`, these ten writes are all grouped
/// together by the buffer and will all be written out in one system call when
/// the `stream` is flushed.
///
/// [`TcpStream`]: crate::net::TcpStream
pub struct StackBufWriter<W: Write, const N: usize> {
inner: W,
buf: [MaybeUninit<u8>; N],
start: usize,
end: usize,
// #30888: If the inner writer panics in a call to write, we don't want to
// write the buffered data a second time in BufWriter's destructor. This
// flag tells the Drop impl if it should skip the flush.
panicked: bool,
}
impl<W: Write, const N: usize> StackBufWriter<W, N> {
/// Creates a new `StackBufWriter<W, N>`.
///
/// # Examples
///
/// ```no_run
/// use std::net::TcpStream;
/// use stack_buffer::StackBufWriter;
///
/// let mut buffer = StackBufWriter::<_, 8192>::new(TcpStream::connect("127.0.0.1:34254").unwrap());
/// ```
pub fn new(inner: W) -> StackBufWriter<W, N> {
StackBufWriter {
inner,
buf: unsafe { MaybeUninit::uninit().assume_init() },
start: 0,
end: 0,
panicked: false,
}
}
/// Send data in our local buffer into the inner writer, looping as
/// necessary until either it's all been sent or an error occurs.
///
/// Because all the data in the buffer has been reported to our owner as
/// "successfully written" (by returning nonzero success values from
/// `write`), any 0-length writes from `inner` must be reported as i/o
/// errors from this method.
fn flush_buf(&mut self) -> io::Result<()> {
/// Helper struct to ensure the buffer is updated after all the writes
/// are complete. It tracks the number of written bytes and drains them
/// all from the front of the buffer when dropped.
struct BufGuard<'a> {
buffer: &'a [u8],
start: &'a mut usize,
end: &'a mut usize,
written: usize,
}
impl<'a> BufGuard<'a> {
fn new(buffer: &'a [u8], start: &'a mut usize, end: &'a mut usize) -> Self {
Self {
buffer,
start,
end,
written: 0,
}
}
/// The unwritten part of the buffer
fn remaining(&self) -> &[u8] {
&self.buffer[self.written..]
}
/// Flag some bytes as removed from the front of the buffer
fn consume(&mut self, amt: usize) {
self.written += amt;
}
/// true if all of the bytes have been written
fn done(&self) -> bool {
self.written >= self.buffer.len()
}
}
impl Drop for BufGuard<'_> {
fn drop(&mut self) {
*self.start += self.written;
if self.start >= self.end {
debug_assert_eq!(self.start, self.end);
*self.start = 0;
*self.end = 0;
}
}
}
let mut guard = BufGuard::new(
unsafe { MaybeUninit::slice_assume_init_ref(&self.buf[self.start..self.end]) },
&mut self.start,
&mut self.end,
);
while !guard.done() {
self.panicked = true;
let r = self.inner.write(guard.remaining());
self.panicked = false;
match r {
Ok(0) => {
return Err(Error::new(
ErrorKind::WriteZero,
"failed to write the buffered data",
));
}
Ok(n) => guard.consume(n),
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(())
}
/// Gets a reference to the underlying writer.
///
/// # Examples
///
/// ```no_run
/// use std::net::TcpStream;
/// use stack_buffer::StackBufWriter;
///
/// let mut buffer = StackBufWriter::<_, 8192>::new(TcpStream::connect("127.0.0.1:34254").unwrap());
///
/// // we can use reference just like buffer
/// let reference = buffer.get_ref();
/// ```
pub fn get_ref(&self) -> &W {
&self.inner
}
/// Gets a mutable reference to the underlying writer.
///
/// It is inadvisable to directly write to the underlying writer.
///
/// # Examples
///
/// ```no_run
/// use std::net::TcpStream;
/// use stack_buffer::StackBufWriter;
///
/// let mut buffer = StackBufWriter::<_, 8192>::new(TcpStream::connect("127.0.0.1:34254").unwrap());
///
/// // we can use reference just like buffer
/// let reference = buffer.get_mut();
/// ```
pub fn get_mut(&mut self) -> &mut W {
&mut self.inner
}
/// Returns a reference to the internally buffered data.
///
/// # Examples
///
/// ```no_run
/// use std::net::TcpStream;
/// use stack_buffer::StackBufWriter;
///
/// let buf_writer = StackBufWriter::<_, 8192>::new(TcpStream::connect("127.0.0.1:34254").unwrap());
///
/// // See how many bytes are currently buffered
/// let bytes_buffered = buf_writer.buffer().len();
/// ```
pub fn buffer(&self) -> &[u8] {
unsafe { MaybeUninit::slice_assume_init_ref(&self.buf[self.start..self.end]) }
}
/// Returns the number of bytes the internal buffer can hold without flushing.
///
/// # Examples
///
/// ```no_run
/// use std::net::TcpStream;
/// use stack_buffer::StackBufWriter;
///
/// let buf_writer = StackBufWriter::<_, 8192>::new(TcpStream::connect("127.0.0.1:34254").unwrap());
///
/// // Check the capacity of the inner buffer
/// let capacity = buf_writer.capacity();
/// // Calculate how many bytes can be written without flushing
/// let without_flush = capacity - buf_writer.buffer().len();
/// ```
pub fn capacity(&self) -> usize {
self.buf.len()
}
// Ensure this function does not get inlined into `write`, so that it
// remains inlineable and its common path remains as short as possible.
// If this function ends up being called frequently relative to `write`,
// it's likely a sign that the client is using an improperly sized buffer
// or their write patterns are somewhat pathological.
#[cold]
#[inline(never)]
fn write_cold(&mut self, buf: &[u8]) -> io::Result<usize> {
if buf.len() > self.spare_capacity() {
self.flush_buf()?;
}
// Why not len > capacity? To avoid a needless trip through the buffer when the input
// exactly fills it. We'd just need to flush it to the underlying writer anyway.
if buf.len() >= self.buf.len() {
self.panicked = true;
let r = self.get_mut().write(buf);
self.panicked = false;
r
} else {
// Write to the buffer. In this case, we write to the buffer even if it fills it
// exactly. Doing otherwise would mean flushing the buffer, then writing this
// input to the inner writer, which in many cases would be a worse strategy.
// SAFETY: There was either enough spare capacity already, or there wasn't and we
// flushed the buffer to ensure that there is. In the latter case, we know that there
// is because flushing ensured that our entire buffer is spare capacity, and we entered
// this block because the input buffer length is less than that capacity. In either
// case, it's safe to write the input buffer to our buffer.
unsafe {
self.write_to_buffer_unchecked(buf);
}
Ok(buf.len())
}
}
// Ensure this function does not get inlined into `write_all`, so that it
// remains inlineable and its common path remains as short as possible.
// If this function ends up being called frequently relative to `write_all`,
// it's likely a sign that the client is using an improperly sized buffer
// or their write patterns are somewhat pathological.
#[cold]
#[inline(never)]
fn write_all_cold(&mut self, buf: &[u8]) -> io::Result<()> {
// Normally, `write_all` just calls `write` in a loop. We can do better
// by calling `self.get_mut().write_all()` directly, which avoids
// round trips through the buffer in the event of a series of partial
// writes in some circumstances.
if buf.len() > self.spare_capacity() {
self.flush_buf()?;
}
// Why not len > capacity? To avoid a needless trip through the buffer when the input
// exactly fills it. We'd just need to flush it to the underlying writer anyway.
if buf.len() >= self.buf.len() {
self.panicked = true;
let r = self.get_mut().write_all(buf);
self.panicked = false;
r
} else {
// Write to the buffer. In this case, we write to the buffer even if it fills it
// exactly. Doing otherwise would mean flushing the buffer, then writing this
// input to the inner writer, which in many cases would be a worse strategy.
// SAFETY: There was either enough spare capacity already, or there wasn't and we
// flushed the buffer to ensure that there is. In the latter case, we know that there
// is because flushing ensured that our entire buffer is spare capacity, and we entered
// this block because the input buffer length is less than that capacity. In either
// case, it's safe to write the input buffer to our buffer.
unsafe {
self.write_to_buffer_unchecked(buf);
}
Ok(())
}
}
// SAFETY: Requires `buf.len() <= self.buf.capacity() - self.buf.len()`,
// i.e., that input buffer length is less than or equal to spare capacity.
#[inline]
unsafe fn write_to_buffer_unchecked(&mut self, buf: &[u8]) {
debug_assert!(buf.len() <= self.spare_capacity());
let buf_len = buf.len();
let src = buf.as_ptr();
let dst = MaybeUninit::slice_assume_init_mut(&mut self.buf)
.as_mut_ptr()
.add(self.end);
ptr::copy_nonoverlapping(src, dst, buf_len);
self.end += buf_len;
}
#[inline]
fn spare_capacity(&self) -> usize {
self.buf.len() - self.end
}
}
impl<W: Write, const N: usize> Write for StackBufWriter<W, N> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
// Use < instead of <= to avoid a needless trip through the buffer in some cases.
// See `write_cold` for details.
if buf.len() < self.spare_capacity() {
// SAFETY: safe by above conditional.
unsafe {
self.write_to_buffer_unchecked(buf);
}
Ok(buf.len())
} else {
self.write_cold(buf)
}
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
// FIXME: Consider applying `#[inline]` / `#[inline(never)]` optimizations already applied
// to `write` and `write_all`. The performance benefits can be significant. See #79930.
if self.get_ref().is_write_vectored() {
// We have to handle the possibility that the total length of the buffers overflows
// `usize` (even though this can only happen if multiple `IoSlice`s reference the
// same underlying buffer, as otherwise the buffers wouldn't fit in memory). If the
// computation overflows, then surely the input cannot fit in our buffer, so we forward
// to the inner writer's `write_vectored` method to let it handle it appropriately.
let saturated_total_len = bufs
.iter()
.fold(0usize, |acc, b| acc.saturating_add(b.len()));
if saturated_total_len > self.spare_capacity() {
// Flush if the total length of the input exceeds our buffer's spare capacity.
// If we would have overflowed, this condition also holds, and we need to flush.
self.flush_buf()?;
}
if saturated_total_len >= self.buf.len() {
// Forward to our inner writer if the total length of the input is greater than or
// equal to our buffer capacity. If we would have overflowed, this condition also
// holds, and we punt to the inner writer.
self.panicked = true;
let r = self.get_mut().write_vectored(bufs);
self.panicked = false;
r
} else {
// `saturated_total_len < self.buf.capacity()` implies that we did not saturate.
// SAFETY: We checked whether or not the spare capacity was large enough above. If
// it was, then we're safe already. If it wasn't, we flushed, making sufficient
// room for any input <= the buffer size, which includes this input.
unsafe {
bufs.iter().for_each(|b| self.write_to_buffer_unchecked(b));
};
Ok(saturated_total_len)
}
} else {
let mut iter = bufs.iter();
let mut total_written = if let Some(buf) = iter.by_ref().find(|&buf| !buf.is_empty()) {
// This is the first non-empty slice to write, so if it does
// not fit in the buffer, we still get to flush and proceed.
if buf.len() > self.spare_capacity() {
self.flush_buf()?;
}
if buf.len() >= self.buf.len() {
// The slice is at least as large as the buffering capacity,
// so it's better to write it directly, bypassing the buffer.
self.panicked = true;
let r = self.get_mut().write(buf);
self.panicked = false;
return r;
} else {
// SAFETY: We checked whether or not the spare capacity was large enough above.
// If it was, then we're safe already. If it wasn't, we flushed, making
// sufficient room for any input <= the buffer size, which includes this input.
unsafe {
self.write_to_buffer_unchecked(buf);
}
buf.len()
}
} else {
return Ok(0);
};
debug_assert!(total_written != 0);
for buf in iter {
if buf.len() <= self.spare_capacity() {
// SAFETY: safe by above conditional.
unsafe {
self.write_to_buffer_unchecked(buf);
}
// This cannot overflow `usize`. If we are here, we've written all of the bytes
// so far to our buffer, and we've ensured that we never exceed the buffer's
// capacity. Therefore, `total_written` <= `self.buf.capacity()` <= `usize::MAX`.
total_written += buf.len();
} else {
break;
}
}
Ok(total_written)
}
}
fn is_write_vectored(&self) -> bool {
true
}
fn flush(&mut self) -> io::Result<()> {
self.flush_buf().and_then(|()| self.get_mut().flush())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
// Use < instead of <= to avoid a needless trip through the buffer in some cases.
// See `write_all_cold` for details.
if buf.len() < self.spare_capacity() {
// SAFETY: safe by above conditional.
unsafe {
self.write_to_buffer_unchecked(buf);
}
Ok(())
} else {
self.write_all_cold(buf)
}
}
}
impl<W: Write, const N: usize> fmt::Debug for StackBufWriter<W, N>
where
W: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("BufWriter")
.field("writer", &self.inner)
.field(
"buffer",
&format_args!("{}/{}", self.end - self.start, self.buf.len()),
)
.finish()
}
}
impl<W: Write + Seek, const N: usize> Seek for StackBufWriter<W, N> {
/// Seek to the offset, in bytes, in the underlying writer.
///
/// Seeking always writes out the internal buffer before seeking.
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
self.flush_buf()?;
self.get_mut().seek(pos)
}
}
impl<W: Write, const N: usize> Drop for StackBufWriter<W, N> {
fn drop(&mut self) {
if !self.panicked {
// dtors should not panic, so we ignore a failed flush
let _r = self.flush_buf();
}
}
}