1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
#![no_std]

//! This library provides an array type that is similar to the built-in Vec type, but lives on the stack!
//!
//! You can store a fixed number of elements of a specific type (even non-copy types!)

mod drain;

use core::{
    fmt, mem,
    mem::MaybeUninit,
    ops::{Bound, Deref, DerefMut, RangeBounds},
    ptr,
    ptr::NonNull,
    slice,
};

use drain::Drain;

/// A data structure for storing and manipulating fixed number of elements of a specific type.
pub struct Array<T, const N: usize> {
    len: usize,
    buf: [MaybeUninit<T>; N],
}

impl<T, const N: usize> Array<T, N> {
    /// Creates a new [`Array<T, N>`].
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let arr = Array::<u8, 4>::new();
    /// // or
    /// let arr: Array<u8, 4> = Array::new();
    /// ```
    #[inline]
    pub fn new() -> Self {
        Self {
            len: 0,
            // SAFETY: An uninitialized `[MaybeUninit<_>; N]` is valid.
            buf: unsafe { MaybeUninit::uninit().assume_init() },
        }
    }

    /// Returns the number of elements the array can hold.
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let arr: Array<u8, 4> = Array::new();
    /// assert_eq!(arr.capacity(), 4);
    /// ```
    #[inline]
    pub const fn capacity(&self) -> usize {
        N
    }

    /// Returns `true`, If the array is full.
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let arr: Array<u8, 3> = Array::from([1, 2]);
    /// assert!(!arr.is_full());
    /// ```
    #[inline]
    pub const fn is_full(&self) -> bool {
        N == self.len
    }

    /// Returns the number of elements can be inserted into the array.
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let arr: Array<u8, 3> = Array::from([1, 2]);
    /// assert_eq!(arr.remaining_capacity(), 1);
    /// ```
    #[inline]
    pub const fn remaining_capacity(&self) -> usize {
        N - self.len
    }

    /// Shortens the array, keeping the first `len` elements and dropping
    /// the rest.
    ///
    /// If `len` is greater than the array's current length, this has no
    /// effect.
    ///
    /// The [`drain`] method can emulate `truncate`, but causes the excess
    /// elements to be returned instead of dropped.
    ///
    /// # Examples
    ///
    /// Truncating a five element array to two elements:
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut arr: Array<u8, 5> = Array::from([1, 2, 3, 4, 5]);
    /// arr.truncate(2);
    /// assert_eq!(arr[..], [1, 2]);
    /// ```
    ///
    /// No truncation occurs when `len` is greater than the array's current
    /// length:
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut arr: Array<u8, 5> = Array::from([1, 2, 3]);
    /// arr.truncate(8);
    /// assert_eq!(arr[..], [1, 2, 3]);
    /// ```
    ///
    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
    /// method.
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut arr: Array<u8, 5> = Array::from([1, 2, 3]);
    /// arr.truncate(0);
    /// assert_eq!(arr[..], []);
    /// ```
    ///
    /// [`clear`]: Array::clear
    /// [`drain`]: Array::drain
    pub fn truncate(&mut self, len: usize) {
        // This is safe because:
        //
        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
        //   case avoids creating an invalid slice, and
        // * the `len` of the array is shrunk before calling `drop_in_place`,
        //   such that no value will be dropped twice in case `drop_in_place`
        //   were to panic once (if it panics twice, the program aborts).
        unsafe {
            // Note: It's intentional that this is `>` and not `>=`.
            //       Changing it to `>=` has negative performance
            //       implications in some cases. See #78884 for more.
            if len > self.len {
                return;
            }
            let remaining_len = self.len - len;
            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
            self.len = len;
            ptr::drop_in_place(s);
        }
    }

    /// Extracts a slice containing the entire array.
    ///
    /// Equivalent to `&s[..]`.
    #[inline]
    pub fn as_slice(&self) -> &[T] {
        self
    }

    /// Extracts a mutable slice of the entire array.
    ///
    /// Equivalent to `&mut s[..]`.
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        self
    }

    /// Returns a raw pointer to the array's buffer.
    ///
    /// The caller must ensure that the array outlives the pointer this
    /// function returns, or else it will end up pointing to garbage.
    /// Modifying the array may cause its buffer to be reallocated,
    /// which would also make any pointers to it invalid.
    ///
    /// The caller must also ensure that the memory the pointer (non-transitively) points to
    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
    ///
    /// [`as_mut_ptr`]: Array::as_mut_ptr
    #[inline]
    pub fn as_ptr(&self) -> *const T {
        // We shadow the slice method of the same name to avoid going through
        // `deref`, which creates an intermediate reference.
        self.buf.as_ptr() as _
    }

    /// Returns an unsafe mutable pointer to the array's buffer.
    ///
    /// The caller must ensure that the array outlives the pointer this
    /// function returns, or else it will end up pointing to garbage.
    /// Modifying the array may cause its buffer to be reallocated,
    /// which would also make any pointers to it invalid.
    #[inline]
    pub fn as_mut_ptr(&mut self) -> *mut T {
        // We shadow the slice method of the same name to avoid going through
        // `deref_mut`, which creates an intermediate reference.
        self.buf.as_mut_ptr() as _
    }

    /// Returns an unsafe mutable pointer to the array's buffer.
    ///
    /// The caller must ensure that the array outlives the pointer this
    /// function returns, or else it will end up pointing to garbage.
    /// Modifying the array may cause its buffer to be reallocated,
    /// which would also make any pointers to it invalid.
    #[inline]
    pub unsafe fn set_len(&mut self, new_len: usize) {
        debug_assert!(new_len <= self.capacity());
        self.len = new_len;
    }

    /// Removes an element from the array and returns it.
    ///
    /// The removed element is replaced by the last element of the array.
    ///
    /// This does not preserve ordering, but is *O*(1).
    /// If you need to preserve the element order, use [`remove`] instead.
    ///
    /// [`remove`]: Array::remove
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of bounds.
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut arr: Array<&str, 4> = Array::from(["foo", "bar", "baz", "qux"]);
    ///
    /// assert_eq!(arr.swap_remove(1), "bar");
    /// assert_eq!(arr[..], ["foo", "qux", "baz"]);
    ///
    /// assert_eq!(arr.swap_remove(0), "foo");
    /// assert_eq!(arr[..], ["baz", "qux"]);
    /// ```
    #[inline]
    pub fn swap_remove(&mut self, index: usize) -> T {
        #[cold]
        #[inline(never)]
        fn assert_failed(index: usize, len: usize) -> ! {
            panic!(
                "swap_remove index (is {}) should be < len (is {})",
                index, len
            );
        }
        let len = self.len();
        if index >= len {
            assert_failed(index, len);
        }
        unsafe {
            // We replace self[index] with the last element. Note that if the
            // bounds check above succeeds there must be a last element (which
            // can be self[index] itself).
            let value = ptr::read(self.as_ptr().add(index));
            let base_ptr = self.as_mut_ptr();
            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
            self.set_len(len - 1);
            value
        }
    }

    /// Inserts an element at position index within the array, shifting all elements after it to the right.
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut list: Array<u8, 3> = Array::from([3]);
    /// list.insert(0, 1);
    /// assert_eq!(&list[..], [1, 3]);
    /// list.insert(1, 2);
    /// assert_eq!(&list[..], [1, 2, 3]);
    /// ```
    ///
    /// # Panics
    /// Panics if the index is out of bounds.
    pub fn insert(&mut self, index: usize, element: T) {
        #[cold]
        #[inline(never)]
        fn assert_failed(index: usize, len: usize) -> ! {
            panic!(
                "insertion index (is {}) should be <= len (is {})",
                index, len
            );
        }

        let len = self.len();
        if index > len {
            assert_failed(index, len);
        }

        // space for the new element
        if self.is_full() {
            panic!("array is full");
        }

        unsafe {
            // infallible
            // The spot to put the new value
            {
                let p = self.as_mut_ptr().add(index);
                // Shift everything over to make space. (Duplicating the
                // `index`th element into two consecutive places.)
                ptr::copy(p, p.offset(1), len - index);
                // Write it in, overwriting the first copy of the `index`th
                // element.
                ptr::write(p, element);
            }
            self.set_len(len + 1);
        }
    }

    /// Removes an element from position index within the array, shifting all elements after it to the left.
    ///
    /// Note: Because this shifts over the remaining elements, it has a
    /// worst-case performance of *O*(*n*). If you don't need the order of elements
    /// to be preserved, use [`swap_remove`] instead.
    ///
    /// [`swap_remove`]: Array::swap_remove
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut list: Array<u8, 3> = Array::from([1, 2, 3]);
    /// assert_eq!(list.remove(0), 1);
    /// assert_eq!(list.remove(0), 2);
    /// assert_eq!(list.remove(0), 3);
    /// ```
    ///
    /// # Panics
    /// Panics if the index is out of bounds.
    pub fn remove(&mut self, index: usize) -> T {
        #[cold]
        #[inline(never)]
        #[track_caller]
        fn assert_failed(index: usize, len: usize) -> ! {
            panic!("removal index (is {}) should be < len (is {})", index, len);
        }

        let len = self.len();
        if index >= len {
            assert_failed(index, len);
        }
        unsafe {
            // infallible
            let ret;
            {
                // the place we are taking from.
                let ptr = self.as_mut_ptr().add(index);
                // copy it out, unsafely having a copy of the value on
                // the stack and in the array at the same time.
                ret = ptr::read(ptr);
                // Shift everything down to fill in that spot.
                ptr::copy(ptr.offset(1), ptr, len - index - 1);
            }
            self.set_len(len - 1);
            ret
        }
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
    /// This method operates in place, visiting each element exactly once in the
    /// original order, and preserves the order of the retained elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut arr: Array<u8, 4> = Array::from([1, 2, 3, 4]);
    ///
    /// arr.retain(|x| *x % 2 == 0);
    /// assert_eq!(arr[..], [2, 4]);
    /// ```
    ///
    /// Because the elements are visited exactly once in the original order,
    /// external state may be used to decide which elements to keep.
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut arr: Array<u8, 5> = Array::from([1, 2, 3, 4, 5]);
    /// let keep = [false, true, true, false, true];
    /// let mut iter = keep.iter();
    /// arr.retain(|_| *iter.next().unwrap());
    /// assert_eq!(arr[..], [2, 3, 5]);
    /// ```
    pub fn retain<F>(&mut self, mut f: F)
    where
        F: FnMut(&mut T) -> bool,
    {
        let original_len = self.len();
        // Avoid double drop if the drop guard is not executed,
        // since we may make some holes during the process.
        unsafe { self.set_len(0) };

        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
        //      |<-              processed len   ->| ^- next to check
        //                  |<-  deleted cnt     ->|
        //      |<-              original_len                          ->|
        // Kept: Elements which predicate returns true on.
        // Hole: Moved or dropped element slot.
        // Unchecked: Unchecked valid elements.
        //
        // This drop guard will be invoked when predicate or `drop` of element panicked.
        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
        // In cases when predicate and `drop` never panick, it will be optimized out.
        struct BackshiftOnDrop<'a, T, const N: usize> {
            v: &'a mut Array<T, N>,
            processed_len: usize,
            deleted_cnt: usize,
            original_len: usize,
        }

        impl<T, const N: usize> Drop for BackshiftOnDrop<'_, T, N> {
            fn drop(&mut self) {
                if self.deleted_cnt > 0 {
                    // SAFETY: Trailing unchecked items must be valid since we never touch them.
                    unsafe {
                        ptr::copy(
                            self.v.as_ptr().add(self.processed_len),
                            self.v
                                .as_mut_ptr()
                                .add(self.processed_len - self.deleted_cnt),
                            self.original_len - self.processed_len,
                        );
                    }
                }
                // SAFETY: After filling holes, all items are in contiguous memory.
                unsafe {
                    self.v.set_len(self.original_len - self.deleted_cnt);
                }
            }
        }

        let mut g = BackshiftOnDrop {
            v: self,
            processed_len: 0,
            deleted_cnt: 0,
            original_len,
        };

        // process_one return a bool indicates whether the processing element should be retained.
        #[inline]
        fn process_one<F, T, const N: usize, const DELETED: bool>(
            f: &mut F,
            g: &mut BackshiftOnDrop<'_, T, N>,
        ) -> bool
        where
            F: FnMut(&mut T) -> bool,
        {
            // SAFETY: Unchecked element must be valid.
            let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
            if !f(cur) {
                // Advance early to avoid double drop if `drop_in_place` panicked.
                g.processed_len += 1;
                g.deleted_cnt += 1;
                // SAFETY: We never touch this element again after dropped.
                unsafe { ptr::drop_in_place(cur) };
                // We already advanced the counter.
                return false;
            }
            if DELETED {
                // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
                // We use copy for move, and never touch this element again.
                unsafe {
                    let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
                    ptr::copy_nonoverlapping(cur, hole_slot, 1);
                }
            }
            g.processed_len += 1;
            return true;
        }

        // Stage 1: Nothing was deleted.
        while g.processed_len != original_len {
            if !process_one::<F, T, N, false>(&mut f, &mut g) {
                break;
            }
        }

        // Stage 2: Some elements were deleted.
        while g.processed_len != original_len {
            process_one::<F, T, N, true>(&mut f, &mut g);
        }

        // All item are processed. This can be optimized to `set_len` by LLVM.
        drop(g);
    }

    /// Removes all but the first of consecutive elements in the array that resolve to the same
    /// key.
    ///
    /// If the array is sorted, this removes all duplicates.
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut arr: Array<u8, 5> = Array::from([10, 20, 21, 30, 20]);
    ///
    /// arr.dedup_by_key(|i| *i / 10);
    ///
    /// assert_eq!(arr[..], [10, 20, 30, 20]);
    #[inline]
    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
    where
        F: FnMut(&mut T) -> K,
        K: PartialEq,
    {
        self.dedup_by(|a, b| key(a) == key(b))
    }

    /// Removes all but the first of consecutive elements in the array satisfying a given equality
    /// relation.
    ///
    /// The `same_bucket` function is passed references to two elements from the array and
    /// must determine if the elements compare equal. The elements are passed in opposite order
    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
    ///
    /// If the array is sorted, this removes all duplicates.
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut arr: Array<&str, 5> = Array::from(["foo", "bar", "Bar", "baz", "bar"]);
    ///
    /// arr.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
    ///
    /// assert_eq!(arr[..], ["foo", "bar", "baz", "bar"]);
    /// ```
    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
    where
        F: FnMut(&mut T, &mut T) -> bool,
    {
        let len = self.len();
        if len <= 1 {
            return;
        }

        /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
        struct FillGapOnDrop<'a, T, const N: usize> {
            /* Offset of the element we want to check if it is duplicate */
            read: usize,

            /* Offset of the place where we want to place the non-duplicate
             * when we find it. */
            write: usize,

            /* The Vec that would need correction if `same_bucket` panicked */
            vec: &'a mut Array<T, N>,
        }

        impl<'a, T, const N: usize> Drop for FillGapOnDrop<'a, T, N> {
            fn drop(&mut self) {
                /* This code gets executed when `same_bucket` panics */

                /* SAFETY: invariant guarantees that `read - write`
                 * and `len - read` never overflow and that the copy is always
                 * in-bounds. */
                unsafe {
                    let ptr = self.vec.as_mut_ptr();
                    let len = self.vec.len();

                    /* How many items were left when `same_bucket` paniced.
                     * Basically vec[read..].len() */
                    let items_left = len.wrapping_sub(self.read);

                    /* Pointer to first item in vec[write..write+items_left] slice */
                    let dropped_ptr = ptr.add(self.write);
                    /* Pointer to first item in vec[read..] slice */
                    let valid_ptr = ptr.add(self.read);

                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
                    ptr::copy(valid_ptr, dropped_ptr, items_left);

                    /* How many items have been already dropped
                     * Basically vec[read..write].len() */
                    let dropped = self.read.wrapping_sub(self.write);

                    self.vec.set_len(len - dropped);
                }
            }
        }

        let mut gap = FillGapOnDrop {
            read: 1,
            write: 1,
            vec: self,
        };
        let ptr = gap.vec.as_mut_ptr();

        /* Drop items while going through Vec, it should be more efficient than
         * doing slice partition_dedup + truncate */

        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
         * are always in-bounds and read_ptr never aliases prev_ptr */
        unsafe {
            while gap.read < len {
                let read_ptr = ptr.add(gap.read);
                let prev_ptr = ptr.add(gap.write.wrapping_sub(1));

                if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
                    // Increase `gap.read` now since the drop may panic.
                    gap.read += 1;
                    /* We have found duplicate, drop it in-place */
                    ptr::drop_in_place(read_ptr);
                } else {
                    let write_ptr = ptr.add(gap.write);

                    /* Because `read_ptr` can be equal to `write_ptr`, we either
                     * have to use `copy` or conditional `copy_nonoverlapping`.
                     * Looks like the first option is faster. */
                    ptr::copy(read_ptr, write_ptr, 1);

                    /* We have filled that place, so go further */
                    gap.write += 1;
                    gap.read += 1;
                }
            }

            /* Technically we could let `gap` clean up with its Drop, but
             * when `same_bucket` is guaranteed to not panic, this bloats a little
             * the codegen, so we just do it manually */
            gap.vec.set_len(gap.write);
            mem::forget(gap);
        }
    }

    /// Appends an element to the back of a collection
    ///
    /// ### Examples
    ///
    /// ```rust
    /// use stack_array::Array;
    ///
    /// let mut arr: Array<u8, 3> = Array::from([1]);
    /// arr.push(2);
    /// arr.push(3);
    /// assert_eq!(&arr[..], [1, 2, 3]);
    /// ```
    ///
    /// # Panics
    /// Panics if the array is full.
    #[inline]
    pub fn push(&mut self, value: T) {
        if self.is_full() {
            panic!("Array is full")
        }
        unsafe {
            let end = self.as_mut_ptr().add(self.len);
            ptr::write(end, value);
            self.len += 1;
        }
    }

    /// Removes the last element from a collection and returns it.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use stack_array::Array;
    ///
    /// let mut arr: Array<u8, 3> = Array::from([1, 2]);
    /// assert_eq!(arr.pop(), 2);
    /// assert_eq!(arr.pop(), 1);
    /// assert!(arr.is_empty());
    /// ```
    ///
    /// # Panics
    /// Panics if the array is empty.
    #[inline]
    pub fn pop(&mut self) -> T {
        unsafe {
            self.len -= 1;
            ptr::read(self.as_ptr().add(self.len()))
        }
    }

    /// Moves all the elements of `other` into `Self`
    ///
    /// # Panics
    ///
    /// Panics if the number of elements in the array overflows.
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut arr: Array<u8, 6> = Array::from([1, 2, 3]);
    /// arr.append([4, 5, 6]);
    /// assert_eq!(arr[..], [1, 2, 3, 4, 5, 6]);
    /// ```
    #[inline]
    pub fn append(&mut self, other: impl AsRef<[T]>) {
        let other = other.as_ref();
        let count = other.len();
        if self.remaining_capacity() < count {
            panic!("Array is full")
        }
        let len = self.len();
        unsafe { ptr::copy_nonoverlapping(other.as_ptr(), self.as_mut_ptr().add(len), count) };
        self.len += count;
    }

    /// Creates a draining iterator that removes the specified range in the array
    /// and yields the removed items.
    ///
    /// When the iterator **is** dropped, all elements in the range are removed
    /// from the array, even if the iterator was not fully consumed. If the
    /// iterator **is not** dropped (with [`mem::forget`] for example), it is
    /// unspecified how many elements are removed.
    ///
    /// # Panics
    ///
    /// Panics if the starting point is greater than the end point or if
    /// the end point is greater than the length of the array.
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    /// 
    /// let mut arr: Array<u8, 3> = Array::from([1, 2, 3]);
    /// let vec: Vec<_> = arr.drain(1..).collect();
    /// assert_eq!(arr[..], [1]);
    /// assert_eq!(vec[..], [2, 3]);
    ///
    /// // A full range clears the array
    /// arr.drain(..);
    /// assert_eq!(arr[..], []);
    /// ```
    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, N>
    where
        R: RangeBounds<usize>,
    {
        // Memory safety
        //
        // When the Drain is first created, it shortens the length of
        // the source array to make sure no uninitialized or moved-from elements
        // are accessible at all if the Drain's destructor never gets to run.
        //
        // Drain will ptr::read out the values to remove.
        // When finished, remaining tail of the vec is copied back to cover
        // the hole, and the array length is restored to the new length.
        //
        let len = self.len();
        let start = match range.start_bound() {
            Bound::Unbounded => 0,
            Bound::Included(&i) => i,
            Bound::Excluded(&i) => i.saturating_add(1),
        };
        let end = match range.end_bound() {
            Bound::Excluded(&j) => j,
            Bound::Included(&j) => j.saturating_add(1),
            Bound::Unbounded => len,
        };

        unsafe {
            // set self.vec length's to start, to be safe in case Drain is leaked
            self.set_len(start);
            // Use the borrow in the IterMut to indicate borrowing behavior of the
            // whole Drain iterator (like &mut T).
            let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
            Drain {
                tail_start: end,
                tail_len: len - end,
                iter: range_slice.iter(),
                vec: NonNull::from(self),
            }
        }
    }

    /// Clears the array, removing all values.
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut list: Array<u8, 3> = Array::from([1, 2, 3]);
    /// list.clear();
    /// assert!(list.is_empty());
    /// ```
    #[inline]
    pub fn clear(&mut self) {
        self.truncate(0)
    }

    /// Returns the number of elements currently in the array.
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///     
    /// let arr: Array<u8, 3> = Array::from([1, 2]);
    /// assert_eq!(arr.len(), 2);
    /// ```
    #[inline]
    pub const fn len(&self) -> usize {
        self.len
    }

    /// Returns true if the array contains no elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use stack_array::Array;
    ///
    /// let mut arr: Array<u8, 2> = Array::new();
    /// assert!(arr.is_empty());
    ///
    /// arr.push(1);
    /// assert!(!arr.is_empty());
    /// ```
    #[inline]
    pub const fn is_empty(&self) -> bool {
        self.len == 0
    }
}

impl<T, const N: usize> Default for Array<T, N> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T, const N: usize> AsRef<[T]> for Array<T, N> {
    #[inline]
    fn as_ref(&self) -> &[T] {
        // SAFETY: slice will contain only initialized objects.
        unsafe { &*(&self.buf[..self.len] as *const [MaybeUninit<T>] as *const [T]) }
    }
}

impl<T, const N: usize> AsMut<[T]> for Array<T, N> {
    #[inline]
    fn as_mut(&mut self) -> &mut [T] {
        // SAFETY: slice will contain only initialized objects.
        unsafe { &mut *(&mut self.buf[..self.len] as *mut [MaybeUninit<T>] as *mut [T]) }
    }
}

impl<T, const N: usize> Deref for Array<T, N> {
    type Target = [T];
    #[inline]
    fn deref(&self) -> &Self::Target {
        self.as_ref()
    }
}

impl<T, const N: usize> DerefMut for Array<T, N> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut()
    }
}

impl<T, const N: usize> Drop for Array<T, N> {
    fn drop(&mut self) {
        self.clear();
    }
}

impl<T: fmt::Debug, const N: usize> fmt::Debug for Array<T, N> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Array")
            .field("len", &self.len)
            .field("buf", &self.as_ref())
            .finish()
    }
}

impl<T, const N: usize> From<&[T]> for Array<T, N> {
    fn from(values: &[T]) -> Self {
        let mut array = Self::new();
        array.append(values);
        array
    }
}

impl<T, const N: usize, const S: usize> From<[T; S]> for Array<T, N> {
    fn from(values: [T; S]) -> Self {
        let mut array = Self::new();
        array.append(values);
        array
    }
}