use npy::{self, NpyData};
use num_traits::cast::ToPrimitive;
use std::error::Error;
use std::io::Read;
use burn::{
module::Module,
nn::{self, conv},
tensor::{backend::Backend, Data, Tensor},
};
use burn::tensor::ElementConversion;
pub fn numpy_to_tensor<B: Backend, const D: usize>(
numpy_data: NpyData<f32>,
device: &B::Device,
) -> Tensor<B, D> {
let v = numpy_data.to_vec();
let shape: Vec<_> = v[0..D].into_iter().map(|&v| v as usize).collect();
let data: Vec<B::FloatElem> = v[D..].into_iter().map(|e| e.elem()).collect();
Tensor::from_data_device(Data::new(data, shape.into()), device)
}
pub fn load_tensor<B: Backend, const D: usize>(
name: &str,
path: &str,
device: &B::Device,
) -> Result<Tensor<B, D>, Box<dyn Error>> {
let tensor_path = format!("{}/{}.npy", path, name);
let mut buf = vec![];
std::fs::File::open(&tensor_path)?.read_to_end(&mut buf)?;
let tensor_numpy: NpyData<f32> = NpyData::from_bytes(&buf)?;
let tensor = numpy_to_tensor(tensor_numpy, device);
println!("{}", tensor_path);
Ok(tensor)
}
pub fn load_f32<B: Backend>(
name: &str,
path: &str,
device: &B::Device,
) -> Result<f32, Box<dyn Error>> {
load_tensor::<B, 1>(name, path, device).map(|t| t.into_scalar().to_f32().unwrap())
}
pub fn load_usize<B: Backend>(
name: &str,
path: &str,
device: &B::Device,
) -> Result<usize, Box<dyn Error>> {
load_tensor::<B, 1>(name, path, device).map(|t| t.into_scalar().to_usize().unwrap())
}
pub fn load_linear<B: Backend>(
path: &str,
device: &B::Device,
) -> Result<nn::Linear<B>, Box<dyn Error>> {
let weight = load_tensor::<B, 2>("weight", path, device)?;
let bias = load_tensor::<B, 1>("bias", path, device).ok();
let record = nn::LinearRecord {
weight: weight.into(),
bias: bias.map(|t| t.into()),
};
let linear: nn::Linear<B> = nn::LinearConfig::new(3, 3).init_with(record);
Ok(linear)
}
pub fn load_embedding<B: Backend>(
path: &str,
device: &B::Device,
) -> Result<nn::Embedding<B>, Box<dyn Error>> {
let weight = load_tensor::<B, 2>("weight", path, device)?;
let [n_vocab, n_state] = weight.dims();
let record = nn::EmbeddingRecord {
weight: weight.into(),
};
let embedding = nn::EmbeddingConfig::new(n_vocab, n_state).init_with(record);
Ok(embedding)
}
pub fn load_layer_norm<B: Backend>(
path: &str,
device: &B::Device,
) -> Result<nn::LayerNorm<B>, Box<dyn Error>> {
let weight = load_tensor::<B, 1>("weight", path, device)?;
let bias = load_tensor::<B, 1>("bias", path, device)?;
let eps = load_f32::<B>("eps", path, device)? as f64;
let [n_state] = weight.dims();
let record = nn::LayerNormRecord {
gamma: weight.into(),
beta: bias.into(),
epsilon: <f64 as Module<B>>::into_record(eps),
};
let layer_norm: nn::LayerNorm<B> = nn::LayerNormConfig::new(n_state).init_with(record);
Ok(layer_norm)
}
pub fn load_conv2d<B: Backend>(
path: &str,
device: &B::Device,
) -> Result<conv::Conv2d<B>, Box<dyn Error>> {
let weight = load_tensor::<B, 4>("weight", path, device)?;
let bias = load_tensor::<B, 1>("bias", path, device).ok();
let has_bias = bias.is_some();
let stride = load_tensor::<B, 1>("stride", path, device)?;
let stride = tensor_to_array_2(stride);
let kernel_size = load_tensor::<B, 1>("kernel_size", path, device)?;
let kernel_size = tensor_to_array_2(kernel_size);
let dilation = load_tensor::<B, 1>("dilation", path, device)?;
let dilation = tensor_to_array_2(dilation);
let n_group = load_usize::<B>("n_group", path, device)?.into();
let n_channels_in = load_usize::<B>("n_channels_in", path, device)?.into();
let n_channels_out = load_usize::<B>("n_channels_out", path, device)?.into();
let padding = load_tensor::<B, 1>("padding", path, device)?;
let padding = tensor_to_array_2(padding);
let padding = nn::PaddingConfig2d::Explicit(padding[0], padding[1]);
let record = conv::Conv2dRecord {
weight: weight.into(),
bias: bias.map(|t| t.into()),
stride: <[usize; 2] as Module<B>>::into_record(stride),
kernel_size: <[usize; 2] as Module<B>>::into_record(kernel_size),
dilation: <[usize; 2] as Module<B>>::into_record(dilation),
groups: <usize as Module<B>>::into_record(n_group),
padding: <nn::PaddingConfig2d as Module<B>>::into_record(padding.clone()),
};
let conv2d: conv::Conv2d<B> =
conv::Conv2dConfig::new([n_channels_in, n_channels_out], kernel_size)
.with_stride(stride)
.with_dilation(dilation)
.with_groups(n_group)
.with_padding(padding)
.with_bias(has_bias)
.init_with(record);
Ok(conv2d)
}
pub fn tensor_to_array_2<B: Backend>(x: Tensor<B, 1>) -> [usize; 2] {
let vec = x.into_data().value;
assert!(vec.len() == 2, "Tensor length must be 2.");
[vec[0].to_usize().unwrap(), vec[1].to_usize().unwrap()]
}
pub fn tensor_to_array<const N: usize, B: Backend>(x: Tensor<B, 1>) -> [usize; N] {
let vec = x.into_data().value;
assert!(vec.len() == N, "Tensor length must be {}.", N);
let mut arr = [0; N];
for (a, t) in arr.iter_mut().zip(vec) {
*a = t.to_usize().unwrap();
}
arr
}