stable_fs/storage/
stable.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
use std::{collections::HashMap, ops::Range};

use ic_cdk::api::stable::WASM_PAGE_SIZE_IN_BYTES;
use ic_stable_structures::{
    memory_manager::{MemoryId, MemoryManager, VirtualMemory},
    BTreeMap, Cell, Memory,
};

use crate::storage::ptr_cache::CachedChunkPtr;

use crate::{
    error::Error,
    runtime::{
        structure_helpers::{get_chunk_infos, grow_memory},
        types::ChunkSize,
        types::ChunkType,
    },
};

use super::{
    allocator::ChunkPtrAllocator,
    chunk_iterator::ChunkV2Iterator,
    journal::CacheJournal,
    metadata_cache::MetadataCache,
    ptr_cache::PtrCache,
    types::{
        DirEntry, DirEntryIndex, FileChunk, FileChunkIndex, FileChunkPtr, FileSize, FileType,
        Header, Metadata, Node, Times, FILE_CHUNK_SIZE_V1, MAX_FILE_CHUNK_SIZE_V2,
    },
    Storage,
};

const ROOT_NODE: Node = 0;
const FS_VERSION: u32 = 1;

const DEFAULT_FIRST_MEMORY_INDEX: u8 = 229;

// the maximum index accepted as the end range
const MAX_MEMORY_INDEX: u8 = 254;

// the number of memory indices used by the file system (currently 8 plus some reserved ids)
const MEMORY_INDEX_COUNT: u8 = 10;

const ZEROES: [u8; MAX_FILE_CHUNK_SIZE_V2] = [0u8; MAX_FILE_CHUNK_SIZE_V2];

enum StorageMemoryIdx {
    Header = 0,
    Metadata = 1,
    DirEntries = 2,
    FileChunksV1 = 3,

    // metadata for mounted files
    MountedMetadata = 4,

    // V2 chunks
    FileChunksV2 = 5,
    ChunkAllocatorV2 = 6,
    FileChunksMemoryV2 = 7,

    // caching helper
    CacheJournal = 8,
}

struct StorageMemories<M: Memory> {
    header_memory: VirtualMemory<M>,
    metadata_memory: VirtualMemory<M>,
    direntry_memory: VirtualMemory<M>,
    filechunk_memory: VirtualMemory<M>,

    mounted_meta_memory: VirtualMemory<M>,

    v2_chunk_ptr_memory: VirtualMemory<M>,
    v2_chunks_memory: VirtualMemory<M>,
    v2_allocator_memory: VirtualMemory<M>,

    cache_journal: VirtualMemory<M>,
}

#[repr(C)]
pub struct StableStorage<M: Memory> {
    header: Cell<Header, VirtualMemory<M>>,
    metadata: BTreeMap<Node, Metadata, VirtualMemory<M>>,
    direntry: BTreeMap<(Node, DirEntryIndex), DirEntry, VirtualMemory<M>>,
    filechunk: BTreeMap<(Node, FileChunkIndex), FileChunk, VirtualMemory<M>>,
    mounted_meta: BTreeMap<Node, Metadata, VirtualMemory<M>>,

    pub(crate) v2_chunk_ptr: BTreeMap<(Node, FileChunkIndex), FileChunkPtr, VirtualMemory<M>>,
    v2_chunks: VirtualMemory<M>,
    v2_allocator: ChunkPtrAllocator<M>,

    cache_journal: CacheJournal<M>,

    // It is not used, but is needed to keep memories alive.
    _memory_manager: Option<MemoryManager<M>>,
    // active mounts
    active_mounts: HashMap<Node, Box<dyn Memory>>,

    // chunk type when creating new files
    chunk_type: ChunkType,

    // chunk pointer cache
    pub(crate) ptr_cache: PtrCache,

    // only use it with non-mounted files
    meta_cache: MetadataCache,
}

impl<M: Memory> StableStorage<M> {
    pub fn new(memory: M) -> Self {
        let memory_manager = MemoryManager::init(memory);

        let mut storage = Self::new_with_memory_manager(
            &memory_manager,
            DEFAULT_FIRST_MEMORY_INDEX..DEFAULT_FIRST_MEMORY_INDEX + MEMORY_INDEX_COUNT,
        );

        storage._memory_manager = Some(memory_manager);

        storage
    }

    pub fn new_with_memory_manager(
        memory_manager: &MemoryManager<M>,
        memory_indices: Range<u8>,
    ) -> StableStorage<M> {
        if memory_indices.end - memory_indices.start < MEMORY_INDEX_COUNT {
            panic!(
                "The memory index range must include at least {} incides",
                MEMORY_INDEX_COUNT
            );
        }

        if memory_indices.end > MAX_MEMORY_INDEX {
            panic!(
                "Last memory index must be less than or equal to {}",
                MAX_MEMORY_INDEX
            );
        }

        let header_memory = memory_manager.get(MemoryId::new(
            memory_indices.start + StorageMemoryIdx::Header as u8,
        ));
        let metadata_memory = memory_manager.get(MemoryId::new(
            memory_indices.start + StorageMemoryIdx::Metadata as u8,
        ));
        let direntry_memory = memory_manager.get(MemoryId::new(
            memory_indices.start + StorageMemoryIdx::DirEntries as u8,
        ));
        let filechunk_memory = memory_manager.get(MemoryId::new(
            memory_indices.start + StorageMemoryIdx::FileChunksV1 as u8,
        ));
        let mounted_meta_memory = memory_manager.get(MemoryId::new(
            memory_indices.start + StorageMemoryIdx::MountedMetadata as u8,
        ));

        let v2_chunk_ptr_memory = memory_manager.get(MemoryId::new(
            memory_indices.start + StorageMemoryIdx::FileChunksV2 as u8,
        ));
        let v2_allocator_memory = memory_manager.get(MemoryId::new(
            memory_indices.start + StorageMemoryIdx::ChunkAllocatorV2 as u8,
        ));
        let v2_chunks_memory = memory_manager.get(MemoryId::new(
            memory_indices.start + StorageMemoryIdx::FileChunksMemoryV2 as u8,
        ));

        let cache_journal = memory_manager.get(MemoryId::new(
            memory_indices.start + StorageMemoryIdx::CacheJournal as u8,
        ));

        let memories = StorageMemories {
            header_memory,
            metadata_memory,
            direntry_memory,
            filechunk_memory,
            mounted_meta_memory,
            v2_chunk_ptr_memory,
            v2_chunks_memory,
            v2_allocator_memory,
            cache_journal,
        };

        Self::new_with_custom_memories(memories)
    }

    fn new_with_custom_memories(memories: StorageMemories<M>) -> Self {
        let default_header_value = Header {
            version: FS_VERSION,
            next_node: ROOT_NODE + 1,
        };

        let v2_allocator = ChunkPtrAllocator::new(memories.v2_allocator_memory).unwrap();
        let cache_journal = CacheJournal::new(memories.cache_journal).unwrap();

        let mut result = Self {
            header: Cell::init(memories.header_memory, default_header_value).unwrap(),
            metadata: BTreeMap::init(memories.metadata_memory),
            direntry: BTreeMap::init(memories.direntry_memory),
            filechunk: BTreeMap::init(memories.filechunk_memory),
            mounted_meta: BTreeMap::init(memories.mounted_meta_memory),

            v2_chunk_ptr: BTreeMap::init(memories.v2_chunk_ptr_memory),
            v2_chunks: memories.v2_chunks_memory,
            v2_allocator,

            cache_journal,

            // transient runtime data
            _memory_manager: None,
            active_mounts: HashMap::new(),
            // default chunk type is V2
            chunk_type: ChunkType::V2,
            ptr_cache: PtrCache::new(),

            meta_cache: MetadataCache::new(),
        };

        let version = result.header.get().version;

        if version != FS_VERSION {
            panic!("Unsupported file system version");
        }

        match result.get_metadata(ROOT_NODE) {
            Ok(_) => {}
            Err(Error::NotFound) => {
                let metadata = Metadata {
                    node: ROOT_NODE,
                    file_type: FileType::Directory,
                    link_count: 1,
                    size: 0,
                    times: Times::default(),
                    first_dir_entry: None,
                    last_dir_entry: None,
                    chunk_type: None,
                };
                result.put_metadata(ROOT_NODE, metadata);
            }
            Err(err) => {
                unreachable!("Unexpected error while loading root metadata: {:?}", err);
            }
        }

        result
    }

    // write into mounted memory
    fn write_mounted(&self, memory: &dyn Memory, offset: FileSize, buf: &[u8]) -> FileSize {
        let length_to_write = buf.len() as FileSize;

        // grow memory if needed
        let max_address = offset as FileSize + length_to_write;

        grow_memory(memory, max_address);

        memory.write(offset, buf);

        length_to_write
    }

    // Insert of update a selected file chunk with the data provided in a buffer.
    fn write_filechunk_v1(
        &mut self,
        node: Node,
        index: FileChunkIndex,
        offset: FileSize,
        buf: &[u8],
    ) {
        let mut entry = self.filechunk.get(&(node, index)).unwrap_or_default();
        entry.bytes[offset as usize..offset as usize + buf.len()].copy_from_slice(buf);
        self.filechunk.insert((node, index), entry);
    }

    fn write_chunks_v2(
        &mut self,
        node: Node,
        offset: FileSize,
        buf: &[u8],
    ) -> Result<FileSize, Error> {
        let mut remainder = buf.len() as FileSize;
        let last_address = offset + remainder;

        let chunk_size = self.chunk_size();

        let start_index = (offset / chunk_size as FileSize) as FileChunkIndex;

        let mut chunk_offset = offset - start_index as FileSize * chunk_size as FileSize;

        let mut size_written: FileSize = 0;

        let write_iter = ChunkV2Iterator::new(
            node,
            offset,
            last_address,
            self.chunk_size() as FileSize,
            &mut self.ptr_cache,
            &mut self.v2_chunk_ptr,
        );

        let write_iter: Vec<_> = write_iter.collect();

        for ((nd, index), chunk_ptr) in write_iter {
            assert!(nd == node);

            if remainder == 0 {
                break;
            }

            let to_write = remainder
                .min(chunk_size as FileSize - chunk_offset)
                .min(buf.len() as FileSize - size_written);

            let write_buf =
                &buf[size_written as usize..(size_written as usize + to_write as usize)];

            let chunk_ptr = if let CachedChunkPtr::ChunkExists(ptr) = chunk_ptr {
                ptr
            } else {
                // insert new chunk
                let ptr = self.v2_allocator.allocate();

                grow_memory(&self.v2_chunks, ptr + chunk_size as FileSize);

                // fill new chunk with zeroes (appart from the area that will be overwritten)

                // fill before written content
                self.v2_chunks.write(ptr, &ZEROES[0..chunk_offset as usize]);

                // fill after written content
                self.v2_chunks.write(
                    ptr + chunk_offset + to_write as FileSize,
                    &ZEROES[0..(chunk_size - chunk_offset as usize - to_write as usize)],
                );

                // register new chunk pointer
                self.v2_chunk_ptr.insert((node, index), ptr);

                //
                self.ptr_cache
                    .add(vec![((node, index), CachedChunkPtr::ChunkExists(ptr))]);

                ptr
            };

            // growing here should not be required as the grow is called during
            // grow_memory(&self.v2_chunks, chunk_ptr + offset + buf.len() as FileSize);
            self.v2_chunks.write(chunk_ptr + chunk_offset, write_buf);

            chunk_offset = 0;
            size_written += to_write;
            remainder -= to_write;
        }

        Ok(size_written)
    }

    fn read_chunks_v1(
        &self,
        node: Node,
        offset: FileSize,
        file_size: FileSize,
        buf: &mut [u8],
    ) -> Result<FileSize, Error> {
        let start_index = (offset / FILE_CHUNK_SIZE_V1 as FileSize) as FileChunkIndex;
        let end_index = ((offset + buf.len() as FileSize) / FILE_CHUNK_SIZE_V1 as FileSize + 1)
            as FileChunkIndex;

        let mut chunk_offset = offset - start_index as FileSize * FILE_CHUNK_SIZE_V1 as FileSize;

        let range = (node, start_index)..(node + 1, 0);

        let mut size_read: FileSize = 0;
        let mut remainder = file_size - offset;

        let mut iter = self.filechunk.range(range);
        let mut cur_fetched = None;

        for cur_index in start_index..end_index {
            let chunk_space = FILE_CHUNK_SIZE_V1 as FileSize - chunk_offset;

            let to_read = remainder
                .min(chunk_space)
                .min(buf.len() as FileSize - size_read);

            // finished reading, buffer full
            if size_read == buf.len() as FileSize {
                break;
            }

            if cur_fetched.is_none() {
                cur_fetched = iter.next();
            }

            let read_buf = &mut buf[size_read as usize..size_read as usize + to_read as usize];

            if let Some(((nd, idx), ref value)) = cur_fetched {
                if idx == cur_index {
                    assert!(nd == node);

                    read_buf.copy_from_slice(
                        &value.bytes
                            [chunk_offset as usize..chunk_offset as usize + to_read as usize],
                    );

                    // consume token
                    cur_fetched = None;
                } else {
                    // fill up with zeroes
                    read_buf.iter_mut().for_each(|m| *m = 0)
                }
            } else {
                // fill up with zeroes
                read_buf.iter_mut().for_each(|m| *m = 0)
            }

            chunk_offset = 0;
            size_read += to_read;
            remainder -= to_read;
        }

        Ok(size_read)
    }

    fn read_chunks_v2(
        &mut self,
        node: Node,
        offset: FileSize,
        file_size: FileSize,
        buf: &mut [u8],
    ) -> Result<FileSize, Error> {
        // early exit if nothing left to read
        if offset >= file_size {
            return Ok(0 as FileSize);
        }

        // compute remainder to read
        let mut remainder = file_size - offset;

        let chunk_size = self.chunk_size();

        let start_index = (offset / chunk_size as FileSize) as FileChunkIndex;

        let mut chunk_offset = offset - start_index as FileSize * chunk_size as FileSize;

        //let end_index = ((offset + buf.len() as FileSize) / chunk_size as FileSize + 1) as FileChunkIndex;
        //let mut range = (node, start_index)..(node, end_index);

        let mut size_read: FileSize = 0;

        let read_iter = ChunkV2Iterator::new(
            node,
            offset,
            file_size,
            chunk_size as FileSize,
            &mut self.ptr_cache,
            &mut self.v2_chunk_ptr,
        );

        for ((nd, _idx), cached_chunk) in read_iter {
            assert!(nd == node);

            // finished reading, buffer full
            if size_read == buf.len() as FileSize {
                break;
            }

            let chunk_space = chunk_size as FileSize - chunk_offset;

            let to_read = remainder
                .min(chunk_space)
                .min(buf.len() as FileSize - size_read);

            let read_buf = &mut buf[size_read as usize..size_read as usize + to_read as usize];

            if let CachedChunkPtr::ChunkExists(cptr) = cached_chunk {
                self.v2_chunks.read(cptr + chunk_offset, read_buf);
            } else {
                // fill read buffer with 0
                read_buf.iter_mut().for_each(|m| *m = 0)
            }

            chunk_offset = 0;
            size_read += to_read;
            remainder -= to_read;
        }

        Ok(size_read)
    }

    fn flush_mounted_meta(&mut self) {
        let node = self.cache_journal.read_mounted_meta_node();

        if let Some(node) = node {
            let mut meta: Metadata = Metadata::default();
            self.cache_journal.read_mounted_meta(&mut meta);
            self.mounted_meta.insert(node, meta);
        }
    }

    fn use_v2(&mut self, metadata: &Metadata, node: u64) -> bool {
        // decide if we use v2 chunks for reading/writing
        let use_v2 = match metadata.chunk_type {
            Some(ChunkType::V2) => true,
            Some(ChunkType::V1) => false,

            // try to figure out, which chunk type to use
            None => {
                if metadata.size > 0 {
                    // try to find any v2 node, othersize use v1
                    let ptr = self.v2_chunk_ptr.range((node, 0)..(node + 1, 0)).next();

                    ptr.is_some()
                } else {
                    self.chunk_type() == ChunkType::V2
                }
            }
        };
        use_v2
    }
}

impl<M: Memory> Storage for StableStorage<M> {
    // Get the root node ID of the storage.
    fn root_node(&self) -> Node {
        ROOT_NODE
    }

    // Generate the next available node ID.
    fn new_node(&mut self) -> Node {
        let mut header = self.header.get().clone();

        let result = header.next_node;

        header.next_node += 1;

        self.header.set(header).unwrap();

        result
    }

    fn get_version(&self) -> u32 {
        let header = self.header.get();
        header.version
    }

    // Get the metadata associated with the node.
    fn get_metadata(&self, node: Node) -> Result<Metadata, Error> {
        if self.is_mounted(node) {
            if self.cache_journal.read_mounted_meta_node() == Some(node) {
                let mut meta = Metadata::default();
                self.cache_journal.read_mounted_meta(&mut meta);

                return Ok(meta);
            }

            self.mounted_meta.get(&node).ok_or(Error::NotFound)
        } else {
            let meta = self.meta_cache.get(node);

            if let Some(meta) = meta {
                return Ok(meta);
            }

            let meta = self.metadata.get(&node).ok_or(Error::NotFound);

            if let Ok(ref meta) = meta {
                self.meta_cache.update(node, meta);
            }

            meta
        }
    }

    // Update the metadata associated with the node.
    fn put_metadata(&mut self, node: Node, metadata: Metadata) {
        assert_eq!(node, metadata.node, "Node does not match medatada.node!");

        if self.is_mounted(node) {
            // flush changes if the last node was different
            if self.cache_journal.read_mounted_meta_node() != Some(node) {
                self.flush_mounted_meta();
            }

            self.cache_journal.write_mounted_meta(&node, &metadata)
        } else {
            self.meta_cache.update(node, &metadata);
            self.metadata.insert(node, metadata);
        }
    }

    // Retrieve the DirEntry instance given the Node and DirEntryIndex.
    fn get_direntry(&self, node: Node, index: DirEntryIndex) -> Result<DirEntry, Error> {
        self.direntry.get(&(node, index)).ok_or(Error::NotFound)
    }

    // Update or insert the DirEntry instance given the Node and DirEntryIndex.
    fn put_direntry(&mut self, node: Node, index: DirEntryIndex, entry: DirEntry) {
        self.direntry.insert((node, index), entry);
    }

    // Remove the DirEntry instance given the Node and DirEntryIndex.
    fn rm_direntry(&mut self, node: Node, index: DirEntryIndex) {
        self.direntry.remove(&(node, index));
    }

    // Fill the buffer contents with data of a chosen data range.
    fn read(&mut self, node: Node, offset: FileSize, buf: &mut [u8]) -> Result<FileSize, Error> {
        let metadata = self.get_metadata(node)?;

        let file_size = metadata.size;

        if offset >= file_size {
            return Ok(0);
        }

        let size_read = if let Some(memory) = self.active_mounts.get(&node) {
            let remainder = file_size - offset;
            let to_read = remainder.min(buf.len() as FileSize);

            // grow memory also for reading
            grow_memory(memory.as_ref(), offset + to_read);

            memory.read(offset, &mut buf[..to_read as usize]);
            to_read
        } else {
            let use_v2 = self.use_v2(&metadata, node);

            if use_v2 {
                self.read_chunks_v2(node, offset, file_size, buf)?
            } else {
                self.read_chunks_v1(node, offset, file_size, buf)?
            }
        };

        Ok(size_read)
    }

    // Write file at the current file cursor, the cursor position will NOT be updated after writing.
    fn write(&mut self, node: Node, offset: FileSize, buf: &[u8]) -> Result<FileSize, Error> {
        let mut metadata = self.get_metadata(node)?;

        let written_size = if let Some(memory) = self.get_mounted_memory(node) {
            self.write_mounted(memory, offset, buf);

            buf.len() as FileSize
        } else {
            let end = offset + buf.len() as FileSize;

            let use_v2 = self.use_v2(&metadata, node);

            if use_v2 {
                self.write_chunks_v2(node, offset, buf)?
            } else {
                let chunk_infos = get_chunk_infos(offset, end, FILE_CHUNK_SIZE_V1);

                let mut written = 0usize;

                for chunk in chunk_infos.into_iter() {
                    self.write_filechunk_v1(
                        node,
                        chunk.index,
                        chunk.offset,
                        &buf[written..(written + chunk.len as usize)],
                    );

                    written += chunk.len as usize;
                }

                written as FileSize
            }
        };

        let end = offset + buf.len() as FileSize;
        if end > metadata.size {
            metadata.size = end;
            self.put_metadata(node, metadata);
        }

        Ok(written_size)
    }

    //
    fn rm_file(&mut self, node: Node) -> Result<(), Error> {
        if self.is_mounted(node) {
            return Err(Error::CannotRemoveMountedMemoryFile);
        }

        // delete v1 chunks
        let range = (node, 0)..(node + 1, 0);
        let mut chunks: Vec<(Node, FileChunkIndex)> = Vec::new();
        for (k, _v) in self.filechunk.range(range) {
            chunks.push(k);
        }

        for (nd, idx) in chunks.into_iter() {
            assert!(nd == node);
            self.filechunk.remove(&(node, idx));
        }

        // delete v2 chunks
        let range = (node, 0)..(node + 1, 0);
        let mut chunks: Vec<(Node, FileChunkIndex)> = Vec::new();
        for (k, _v) in self.v2_chunk_ptr.range(range) {
            chunks.push(k);
        }

        for (nd, idx) in chunks.into_iter() {
            assert!(nd == node);
            let removed = self.v2_chunk_ptr.remove(&(node, idx));

            if let Some(removed) = removed {
                self.v2_allocator.free(removed);
            }
        }

        // clear cache
        self.ptr_cache.clear();

        // remove metadata
        self.mounted_meta.remove(&node);
        self.metadata.remove(&node);

        let mounted_meta_node = self.cache_journal.read_mounted_meta_node();
        if mounted_meta_node == Some(node) {
            // reset cached mounted metadata
            self.cache_journal.reset_mounted_meta()
        }

        self.meta_cache.clear();

        Ok(())
    }

    fn mount_node(&mut self, node: Node, memory: Box<dyn Memory>) -> Result<(), Error> {
        if self.is_mounted(node) {
            return Err(Error::MemoryFileIsMountedAlready);
        }

        // do extra meta preparation
        // get the file metadata (we are not mounted at this point)
        let mut file_meta = self.get_metadata(node)?;

        // activate mount
        self.active_mounts.insert(node, memory);

        if let Ok(_old_mounted_meta) = self.get_metadata(node) {
            // do nothing, we already have the metadata
        } else {
            // take a copy of the file meta, set the size to 0 by default
            file_meta.size = 0;

            // update mounted metadata
            self.put_metadata(node, file_meta);
        };

        Ok(())
    }

    fn unmount_node(&mut self, node: Node) -> Result<Box<dyn Memory>, Error> {
        let memory = self.active_mounts.remove(&node);

        memory.ok_or(Error::MemoryFileIsNotMounted)
    }

    fn is_mounted(&self, node: Node) -> bool {
        self.active_mounts.contains_key(&node)
    }

    fn get_mounted_memory(&self, node: Node) -> Option<&dyn Memory> {
        let res: Option<&Box<dyn Memory>> = self.active_mounts.get(&node);

        res.map(|b| b.as_ref())
    }

    fn init_mounted_memory(&mut self, node: Node) -> Result<(), Error> {
        // temporary disable mount to activate access to the original file
        let memory = self.unmount_node(node)?;

        let meta = self.get_metadata(node)?;
        let file_size = meta.size;

        // grow memory if needed
        grow_memory(memory.as_ref(), file_size);

        let mut remainder = file_size;

        let mut buf = [0u8; WASM_PAGE_SIZE_IN_BYTES as usize];

        let mut offset = 0;

        while remainder > 0 {
            let to_read = remainder.min(buf.len() as FileSize);

            self.read(node, offset, &mut buf[..to_read as usize])?;

            memory.write(offset, &buf[..to_read as usize]);

            offset += to_read;
            remainder -= to_read;
        }

        self.mount_node(node, memory)?;

        self.put_metadata(node, meta);

        Ok(())
    }

    fn store_mounted_memory(&mut self, node: Node) -> Result<(), Error> {
        // get current size of the mounted memory
        let meta = self.get_metadata(node)?;
        let file_size = meta.size;

        // temporary disable mount to activate access to the original file
        let memory = self.unmount_node(node)?;

        // grow memory if needed
        grow_memory(memory.as_ref(), file_size);

        let mut remainder = file_size;

        let mut buf = [0u8; WASM_PAGE_SIZE_IN_BYTES as usize];

        let mut offset = 0;

        while remainder > 0 {
            let to_read = remainder.min(buf.len() as FileSize);

            // grow memory also for reading
            grow_memory(memory.as_ref(), offset + to_read);

            memory.read(offset, &mut buf[..to_read as usize]);

            self.write(node, offset, &buf[..to_read as usize])?;

            offset += to_read;
            remainder -= to_read;
        }

        self.put_metadata(node, meta);

        self.mount_node(node, memory)?;

        Ok(())
    }

    fn set_chunk_size(&mut self, chunk_size: ChunkSize) -> Result<(), Error> {
        self.v2_allocator.set_chunk_size(chunk_size as usize)
    }

    fn chunk_size(&self) -> usize {
        self.v2_allocator.chunk_size()
    }

    fn set_chunk_type(&mut self, chunk_type: ChunkType) {
        self.chunk_type = chunk_type;
    }

    fn chunk_type(&self) -> ChunkType {
        self.chunk_type
    }

    fn flush(&mut self, _node: Node) {
        self.flush_mounted_meta();
    }
}

#[cfg(test)]
mod tests {

    use ic_stable_structures::DefaultMemoryImpl;

    use crate::storage::types::FileName;

    use super::*;

    #[test]
    fn read_and_write_filechunk() {
        let mut storage = StableStorage::new(DefaultMemoryImpl::default());
        let node = storage.new_node();
        storage.put_metadata(
            node,
            Metadata {
                node,
                file_type: FileType::RegularFile,
                link_count: 1,
                size: 10,
                times: Times::default(),
                first_dir_entry: Some(42),
                last_dir_entry: Some(24),
                chunk_type: Some(storage.chunk_type()),
            },
        );
        let metadata = storage.get_metadata(node).unwrap();
        assert_eq!(metadata.node, node);
        assert_eq!(metadata.file_type, FileType::RegularFile);
        assert_eq!(metadata.link_count, 1);
        assert_eq!(metadata.first_dir_entry, Some(42));
        assert_eq!(metadata.last_dir_entry, Some(24));
        storage.write(node, 0, &[42; 10]).unwrap();

        let mut buf = [0; 10];
        storage.read(node, 0, &mut buf).unwrap();
        assert_eq!(buf, [42; 10]);
    }

    #[test]
    fn read_and_write_direntry() {
        let mut storage = StableStorage::new(DefaultMemoryImpl::default());
        let node = storage.new_node();
        storage.put_direntry(
            node,
            7,
            DirEntry {
                node,
                name: FileName::new("test".as_bytes()).unwrap(),
                next_entry: Some(42),
                prev_entry: Some(24),
            },
        );
        let direntry = storage.get_direntry(node, 7).unwrap();
        assert_eq!(direntry.node, node);
        assert_eq!(
            direntry.name.bytes,
            FileName::new("test".as_bytes()).unwrap().bytes
        );
        assert_eq!(direntry.next_entry, Some(42));
        assert_eq!(direntry.prev_entry, Some(24));
    }
}