1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
//! This module provides the implementation of the STAR (distributed
//! Secret-sharing for Threshold AggRegation of data) protocol. The STAR
//! protocol provides the ability for clients to report secret
//! measurements to servers, whilst maintaining k-anonymity-like
//! guarantees.
//!
//! In essence, such measurements are only revealed if a `threshold`
//! number of clients all send the same message. Clients are permitted
//! to also send relevant, arbitrary associated data that can also be
//! revealed.
//!
//! In STAR, clients derive randomness from a separate server that
//! implements a puncturable partially oblivious pseudorandom function
//! (PPOPRF) protocol. In STARLite, clients derive randomness used for
//! hiding their measurements locally from the measurement itself. The
//! PPOPRF protocol takes in the client measurement, a server secret
//! key, and the current epoch metadata tag as input, and outputs a
//! random (deterministic) value.
//!
//! In the case of STARLite, the design is simpler than in STAR, but
//! security is ONLY maintained in the case where client measurements
//! are sampled from a high-entropy domain. In the case of STAR, client
//! security guarantees hold even for low-entropy inputs, as long as the
//! randomness is only revealed after the epoch metadata tag has been
//! punctured from the randomness server's secret key.
//!
//! See the [full paper](https://arxiv.org/abs/2109.10074) for more
//! details.
//!
//! # Example (client)
//!
//! The following example shows how to generate a message triple of `(ciphertext,
//! share, tag)`. This message can then be sent to the aggregation server.
//!
//! ```
//! # use sta_rs::*;
//! # let threshold = 2;
//! # let epoch = "t";
//! let measurement = SingleMeasurement::new("hello world".as_bytes());
//! let mg = MessageGenerator::new(measurement, threshold, epoch);
//! let mut rnd = [0u8; 32];
//! // NOTE: this is for STARLite. Randomness must be sampled from a
//! // randomness server in order to implement the full STAR protocol.
//! mg.sample_local_randomness(&mut rnd);
//!
//! let Message {
//! ciphertext,
//! share,
//! tag,
//! } = Message::generate(&mg, &mut rnd, None)
//! .expect("Could not generate message triplet");
//! ```
//! # Example (WASM client)
//!
//! The following example shows how to generate a triple of `(key,
//! share, tag)` for each client in the STARLite protocol, which is used
//! in the existing WASM integration. The STAR protocol is not yet
//! supported.
//!
//! In the WASM integration the `key` MUST then be used to encrypt the
//! measurement and associated data into a `ciphertext` in the
//! higher-level application. The message triple `(ciphertext, share,
//! tag)` is then sent to the server.
//!
//! ```
//! # use sta_rs::*;
//! # let threshold = 2;
//! # let epoch = "t";
//! let measurement = SingleMeasurement::new("hello world".as_bytes());
//! let mg = MessageGenerator::new(measurement, threshold, epoch);
//! let mut rnd = [0u8; 32];
//! // NOTE: this is for STARLite. Randomness must be sampled from a
//! // randomness server in order to implement the full STAR protocol.
//! mg.sample_local_randomness(&mut rnd);
//! let WASMSharingMaterial {
//! key,
//! share,
//! tag,
//! } = mg.share_with_local_randomness().unwrap();
//! ```
//!
//! # Example (server)
//!
//! Once over `threshold` shares are recovered from clients, it is
//! possible to recover the randomness encoded in each of the shares
//!
//! ```
//! # use sta_rs::*;
//! # use star_test_utils::*;
//! # let mut messages = Vec::new();
//! # let threshold = 2;
//! # let epoch = "t";
//! # let measurement = SingleMeasurement::new("hello world".as_bytes());
//!
//! # let mg = MessageGenerator::new(measurement, threshold, epoch);
//! # for i in 0..3 {
//! # let mut rnd = [0u8; 32];
//! # mg.sample_local_randomness(&mut rnd);
//! # messages.push(Message::generate(&mg, &mut rnd, None).unwrap());
//! # }
//! # let shares: Vec<Share> = messages.iter().map(|triple| triple.share.clone()).collect();
//! let value = share_recover(&shares).unwrap().get_message();
//!
//! // derive key for decrypting payload data in client message
//! let mut enc_key = vec![0u8; 16];
//! derive_ske_key(&value, epoch.as_bytes(), &mut enc_key);
//! ```
use std::error::Error;
use std::str;
use rand::Rng;
mod strobe_rng;
use strobe_rng::StrobeRng;
use strobe_rs::{SecParam, Strobe};
use zeroize::{Zeroize, ZeroizeOnDrop};
use adss::{recover, Commune};
pub use {adss::load_bytes, adss::store_bytes, adss::Share as InternalShare};
#[cfg(feature = "star2")]
use ppoprf::ppoprf::{end_to_end_evaluation, Server as PPOPRFServer};
pub const AES_BLOCK_LEN: usize = 24;
pub const DIGEST_LEN: usize = 32;
// A `Measurement` provides the wrapper for a client-generated value in
// the STAR protocol that is later aggregated and processed at the
// server-side. Measurements are only revealed on the server-side if the
// `threshold` is met, in terms of clients that send the same
// `Measurement` value.
#[derive(Clone, Debug, PartialEq, Eq, Zeroize, ZeroizeOnDrop)]
pub struct SingleMeasurement(Vec<u8>);
impl SingleMeasurement {
pub fn new(x: &[u8]) -> Self {
Self(x.to_vec())
}
pub fn as_slice(&self) -> &[u8] {
self.0.as_slice()
}
pub fn as_vec(&self) -> Vec<u8> {
self.0.clone()
}
pub fn byte_len(&self) -> usize {
self.0.len()
}
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
}
impl From<&str> for SingleMeasurement {
fn from(s: &str) -> Self {
SingleMeasurement::new(s.as_bytes())
}
}
// The `AssociatedData` struct wraps the arbitrary data that a client
// can encode in its message to the `Server`. Such data is also only
// revealed in the case that the `threshold` is met.
#[derive(Debug)]
pub struct AssociatedData(Vec<u8>);
impl AssociatedData {
pub fn new(buf: &[u8]) -> Self {
Self(buf.to_vec())
}
pub fn as_slice(&self) -> &[u8] {
self.0.as_slice()
}
pub fn as_vec(&self) -> Vec<u8> {
self.0.clone()
}
}
impl From<&str> for AssociatedData {
fn from(s: &str) -> Self {
AssociatedData::from(s.as_bytes())
}
}
impl From<&[u8]> for AssociatedData {
fn from(buf: &[u8]) -> Self {
AssociatedData::new(buf)
}
}
// Wrapper type for `adss::Share` to implement `ZeroizeOnDrop`properly.
#[derive(Clone, Debug, PartialEq, Eq, Zeroize)]
pub struct Share(InternalShare);
impl Share {
pub fn to_bytes(&self) -> Vec<u8> {
self.0.to_bytes()
}
pub fn from_bytes(bytes: &[u8]) -> Option<Self> {
Some(Self(InternalShare::from_bytes(bytes)?))
}
}
impl Drop for Share {
fn drop(&mut self) {
self.0.zeroize();
}
}
// The `Ciphertext` struct holds the symmetrically encrypted data that
// corresponds to the concatenation of `Measurement` and any optional
// `AssociatedData`.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Ciphertext {
bytes: Vec<u8>,
}
impl Ciphertext {
pub fn new(enc_key_buf: &[u8], data: &[u8], label: &str) -> Self {
let mut s = Strobe::new(label.as_bytes(), SecParam::B128);
s.key(enc_key_buf, false);
let mut x = vec![0u8; data.len()];
x.copy_from_slice(data);
s.send_enc(&mut x, false);
Self { bytes: x.to_vec() }
}
pub fn decrypt(&self, enc_key_buf: &[u8], label: &str) -> Vec<u8> {
let mut s = Strobe::new(label.as_bytes(), SecParam::B128);
s.key(enc_key_buf, false);
let mut m = vec![0u8; self.bytes.len()];
m.copy_from_slice(&self.bytes);
s.recv_enc(&mut m, false);
m
}
pub fn to_bytes(&self) -> Vec<u8> {
self.bytes.clone()
}
pub fn from_bytes(bytes: &[u8]) -> Ciphertext {
Self {
bytes: bytes.to_vec(),
}
}
}
impl From<Vec<u8>> for Ciphertext {
fn from(bytes: Vec<u8>) -> Self {
Self { bytes }
}
}
// A `Message` is the message that a client sends to the server during
// the STAR protocol. Consisting of a `Ciphertext`, a `Share`, and a
// `tag`. The `Ciphertext`can only be decrypted if a `threshold` number
// of clients possess the same measurement.
//
// This struct should only be used by applications that do not perform
// encryption at the higher application-levels.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Message {
pub ciphertext: Ciphertext,
pub share: Share,
pub tag: Vec<u8>,
}
impl Message {
fn new(c: Ciphertext, share: Share, tag: &[u8]) -> Self {
Self {
ciphertext: c,
share,
tag: tag.to_vec(),
}
}
// Generates a message that is used in the aggregation phase
pub fn generate(
mg: &MessageGenerator,
rnd: &[u8; 32],
aux: Option<AssociatedData>,
) -> Result<Self, Box<dyn Error>> {
let r = mg.derive_random_values(rnd);
// key is then used for encrypting measurement and associated
// data
let key = mg.derive_key(&r[0]);
let share = mg.share(&r[0], &r[1])?;
let tag = r[2];
let mut data: Vec<u8> = Vec::new();
store_bytes(mg.x.as_slice(), &mut data);
if let Some(ad) = aux {
store_bytes(ad.as_slice(), &mut data);
}
let ciphertext = Ciphertext::new(&key, &data, "star_encrypt");
Ok(Message::new(ciphertext, share, &tag))
}
pub fn to_bytes(&self) -> Vec<u8> {
let mut out: Vec<u8> = Vec::new();
// ciphertext: Ciphertext
store_bytes(&self.ciphertext.to_bytes(), &mut out);
// share: Share
store_bytes(&self.share.to_bytes(), &mut out);
// tag: Vec<u8>
store_bytes(&self.tag, &mut out);
out
}
pub fn from_bytes(bytes: &[u8]) -> Option<Message> {
let mut slice = bytes;
// ciphertext: Ciphertext
let cb = load_bytes(slice)?;
let ciphertext = Ciphertext::from_bytes(cb);
slice = &slice[4 + cb.len()..];
// share: Share
let sb = load_bytes(slice)?;
let share = Share::from_bytes(sb)?;
slice = &slice[4 + sb.len()..];
// tag: Vec<u8>
let tag = load_bytes(slice)?;
Some(Message {
ciphertext,
share,
tag: tag.to_vec(),
})
}
}
// The `WASMSharingMaterial` consists of all data that is passed to
// higher-level applications using the star-wasm API. This allows
// encrypting and sending the client measurements in higher-level
// implementations of the STAR protocol.
#[derive(Zeroize)]
pub struct WASMSharingMaterial {
/// 16-byte AES encryption key
pub key: [u8; 16],
/// Secret share of key derivation randomness
pub share: Share,
/// 32-byte random tag associated with client measurement
pub tag: [u8; 32],
}
// In the STAR protocol, the `MessageGenerator` is the entity which
// samples and sends `Measurement` to the `AggregationServer`. The
// measurements will only be revealed if a `threshold` number of
// MessageGenerators send the same encoded `Measurement` value.
//
// Note that the `MessageGenerator` struct holds all of the public
// protocol parameters, the secret `Measurement` and `AssociatedData`
// objects, and where randomness should be sampled from.
//
// In the STARLite protocol, the `MessageGenerator` samples randomness
// locally: derived straight from the `Measurement` itself. In the STAR
// protocol, the `MessageGenerator` derives its randomness from an
// exchange with a specifically-defined server that runs a POPRF.
#[derive(Zeroize, ZeroizeOnDrop)]
pub struct MessageGenerator {
pub x: SingleMeasurement,
threshold: u32,
epoch: String,
}
impl MessageGenerator {
pub fn new(x: SingleMeasurement, threshold: u32, epoch: &str) -> Self {
Self {
x,
threshold,
epoch: epoch.to_string(),
}
}
// Share with OPRF randomness (STARLite)
pub fn share_with_local_randomness(
&self,
) -> Result<WASMSharingMaterial, Box<dyn Error>> {
let mut rnd = vec![0u8; 32];
self.sample_local_randomness(&mut rnd);
let r = self.derive_random_values(&rnd);
// key is then used for encrypting measurement and associated
// data
let key = self.derive_key(&r[0]);
let share = self.share(&r[0], &r[1])?;
let tag = r[2];
Ok(WASMSharingMaterial { key, share, tag })
}
#[cfg(feature = "star2")]
// Share with OPRF randomness (STAR)
pub fn share_with_oprf_randomness(
&self,
oprf_server: &PPOPRFServer,
) -> WASMSharingMaterial {
let mut rnd = vec![0u8; 32];
self.sample_oprf_randomness(oprf_server, &mut rnd);
let r = self.derive_random_values(&rnd);
// key is then used for encrypting measurement and associated
// data
let key = self.derive_key(&r[0]);
let share = self.share(&r[0], &r[1]);
let tag = r[2].clone();
WASMSharingMaterial { key, share, tag }
}
fn derive_random_values(&self, randomness: &[u8]) -> Vec<[u8; 32]> {
let mut output = Vec::new();
for i in 0..3 {
let mut to_fill = [0u8; 32];
strobe_digest(
randomness,
&[&[i as u8]],
"star_derive_randoms",
&mut to_fill,
);
output.push(to_fill);
}
output
}
fn derive_key(&self, r1: &[u8]) -> [u8; 16] {
let mut enc_key = [0u8; 16];
derive_ske_key(r1, self.epoch.as_bytes(), &mut enc_key);
enc_key
}
fn share(&self, r1: &[u8], r2: &[u8]) -> Result<Share, Box<dyn Error>> {
let c = Commune::new(self.threshold, r1.to_vec(), r2.to_vec(), None);
Ok(Share(c.share()?))
}
pub fn sample_local_randomness(&self, out: &mut [u8]) {
if out.len() != DIGEST_LEN {
panic!(
"Output buffer length ({}) does not match randomness length ({})",
out.len(),
DIGEST_LEN
);
}
strobe_digest(
self.x.as_slice(),
&[self.epoch.as_bytes(), &self.threshold.to_le_bytes()],
"star_sample_local",
out,
);
}
#[cfg(feature = "star2")]
pub fn sample_oprf_randomness(
&self,
oprf_server: &PPOPRFServer,
out: &mut [u8],
) {
let mds = oprf_server.get_valid_metadata_tags();
let index = mds.iter().position(|r| r == self.epoch.as_bytes()).unwrap();
end_to_end_evaluation(oprf_server, self.x.as_slice(), index, true, out);
}
}
// FIXME can we implement collect trait?
pub fn share_recover(shares: &[Share]) -> Result<Commune, Box<dyn Error>> {
recover(
&shares
.iter()
.map(|share| share.0.clone())
.collect::<Vec<InternalShare>>(),
)
}
// The `derive_ske_key` helper function derives symmetric encryption
// keys that are used for encrypting/decrypting `Ciphertext` objects
// during the STAR protocol.
pub fn derive_ske_key(r1: &[u8], epoch: &[u8], key_out: &mut [u8]) {
let mut to_fill = vec![0u8; 32];
strobe_digest(r1, &[epoch], "star_derive_ske_key", &mut to_fill);
key_out.copy_from_slice(&to_fill[..16]);
}
pub fn strobe_digest(key: &[u8], ad: &[&[u8]], label: &str, out: &mut [u8]) {
if out.len() != DIGEST_LEN {
panic!(
"Output buffer length ({}) does not match intended output length ({})",
out.len(),
DIGEST_LEN
);
} else if ad.is_empty() {
panic!("No additional data provided");
}
let mut t = Strobe::new(label.as_bytes(), SecParam::B128);
t.key(key, false);
for x in ad.iter() {
t.ad(x, false);
}
let mut rng: StrobeRng = t.into();
rng.fill(out);
}