1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
//! Rivest–Shamir–Adleman (RSA) private keys.

use crate::{public::RsaPublicKey, Error, Mpint, Result};
use core::fmt;
use encoding::{CheckedSum, Decode, Encode, Reader, Writer};
use subtle::{Choice, ConstantTimeEq};
use zeroize::Zeroize;

#[cfg(feature = "rsa")]
use {
    rand_core::CryptoRngCore,
    rsa::{
        pkcs1v15,
        traits::{PrivateKeyParts, PublicKeyParts},
    },
    sha2::{digest::const_oid::AssociatedOid, Digest},
};

/// RSA private key.
#[derive(Clone)]
pub struct RsaPrivateKey {
    /// RSA private exponent.
    pub d: Mpint,

    /// CRT coefficient: `(inverse of q) mod p`.
    pub iqmp: Mpint,

    /// First prime factor of `n`.
    pub p: Mpint,

    /// Second prime factor of `n`.
    pub q: Mpint,
}

impl ConstantTimeEq for RsaPrivateKey {
    fn ct_eq(&self, other: &Self) -> Choice {
        self.d.ct_eq(&other.d)
            & self.iqmp.ct_eq(&self.iqmp)
            & self.p.ct_eq(&other.p)
            & self.q.ct_eq(&other.q)
    }
}

impl Eq for RsaPrivateKey {}

impl PartialEq for RsaPrivateKey {
    fn eq(&self, other: &Self) -> bool {
        self.ct_eq(other).into()
    }
}

impl Decode for RsaPrivateKey {
    type Error = Error;

    fn decode(reader: &mut impl Reader) -> Result<Self> {
        let d = Mpint::decode(reader)?;
        let iqmp = Mpint::decode(reader)?;
        let p = Mpint::decode(reader)?;
        let q = Mpint::decode(reader)?;
        Ok(Self { d, iqmp, p, q })
    }
}

impl Encode for RsaPrivateKey {
    fn encoded_len(&self) -> encoding::Result<usize> {
        [
            self.d.encoded_len()?,
            self.iqmp.encoded_len()?,
            self.p.encoded_len()?,
            self.q.encoded_len()?,
        ]
        .checked_sum()
    }

    fn encode(&self, writer: &mut impl Writer) -> encoding::Result<()> {
        self.d.encode(writer)?;
        self.iqmp.encode(writer)?;
        self.p.encode(writer)?;
        self.q.encode(writer)?;
        Ok(())
    }
}

impl Drop for RsaPrivateKey {
    fn drop(&mut self) {
        self.d.zeroize();
        self.iqmp.zeroize();
        self.p.zeroize();
        self.q.zeroize();
    }
}

/// RSA private/public keypair.
#[derive(Clone)]
pub struct RsaKeypair {
    /// Public key.
    pub public: RsaPublicKey,

    /// Private key.
    pub private: RsaPrivateKey,
}

impl RsaKeypair {
    /// Minimum allowed RSA key size.
    #[cfg(feature = "rsa")]
    pub(crate) const MIN_KEY_SIZE: usize = 2048;

    /// Generate a random RSA keypair of the given size.
    #[cfg(feature = "rsa")]
    pub fn random(rng: &mut impl CryptoRngCore, bit_size: usize) -> Result<Self> {
        if bit_size >= Self::MIN_KEY_SIZE {
            rsa::RsaPrivateKey::new(rng, bit_size)?.try_into()
        } else {
            Err(Error::Crypto)
        }
    }
}

impl ConstantTimeEq for RsaKeypair {
    fn ct_eq(&self, other: &Self) -> Choice {
        Choice::from((self.public == other.public) as u8) & self.private.ct_eq(&other.private)
    }
}

impl Eq for RsaKeypair {}

impl PartialEq for RsaKeypair {
    fn eq(&self, other: &Self) -> bool {
        self.ct_eq(other).into()
    }
}

impl Decode for RsaKeypair {
    type Error = Error;

    fn decode(reader: &mut impl Reader) -> Result<Self> {
        let n = Mpint::decode(reader)?;
        let e = Mpint::decode(reader)?;
        let public = RsaPublicKey { n, e };
        let private = RsaPrivateKey::decode(reader)?;
        Ok(RsaKeypair { public, private })
    }
}

impl Encode for RsaKeypair {
    fn encoded_len(&self) -> encoding::Result<usize> {
        [
            self.public.n.encoded_len()?,
            self.public.e.encoded_len()?,
            self.private.encoded_len()?,
        ]
        .checked_sum()
    }

    fn encode(&self, writer: &mut impl Writer) -> encoding::Result<()> {
        self.public.n.encode(writer)?;
        self.public.e.encode(writer)?;
        self.private.encode(writer)
    }
}

impl From<RsaKeypair> for RsaPublicKey {
    fn from(keypair: RsaKeypair) -> RsaPublicKey {
        keypair.public
    }
}

impl From<&RsaKeypair> for RsaPublicKey {
    fn from(keypair: &RsaKeypair) -> RsaPublicKey {
        keypair.public.clone()
    }
}

impl fmt::Debug for RsaKeypair {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("RsaKeypair")
            .field("public", &self.public)
            .finish_non_exhaustive()
    }
}

#[cfg(feature = "rsa")]
impl TryFrom<RsaKeypair> for rsa::RsaPrivateKey {
    type Error = Error;

    fn try_from(key: RsaKeypair) -> Result<rsa::RsaPrivateKey> {
        rsa::RsaPrivateKey::try_from(&key)
    }
}

#[cfg(feature = "rsa")]
impl TryFrom<&RsaKeypair> for rsa::RsaPrivateKey {
    type Error = Error;

    fn try_from(key: &RsaKeypair) -> Result<rsa::RsaPrivateKey> {
        let ret = rsa::RsaPrivateKey::from_components(
            rsa::BigUint::try_from(&key.public.n)?,
            rsa::BigUint::try_from(&key.public.e)?,
            rsa::BigUint::try_from(&key.private.d)?,
            vec![
                rsa::BigUint::try_from(&key.private.p)?,
                rsa::BigUint::try_from(&key.private.p)?,
            ],
        )?;

        if ret.size().saturating_mul(8) >= RsaKeypair::MIN_KEY_SIZE {
            Ok(ret)
        } else {
            Err(Error::Crypto)
        }
    }
}

#[cfg(feature = "rsa")]
impl TryFrom<rsa::RsaPrivateKey> for RsaKeypair {
    type Error = Error;

    fn try_from(key: rsa::RsaPrivateKey) -> Result<RsaKeypair> {
        RsaKeypair::try_from(&key)
    }
}

#[cfg(feature = "rsa")]
impl TryFrom<&rsa::RsaPrivateKey> for RsaKeypair {
    type Error = Error;

    fn try_from(key: &rsa::RsaPrivateKey) -> Result<RsaKeypair> {
        // Multi-prime keys are not supported
        if key.primes().len() > 2 {
            return Err(Error::Crypto);
        }

        let public = RsaPublicKey::try_from(key.to_public_key())?;

        let p = &key.primes()[0];
        let q = &key.primes()[1];
        let iqmp = key.crt_coefficient().ok_or(Error::Crypto)?;

        let private = RsaPrivateKey {
            d: key.d().try_into()?,
            iqmp: iqmp.try_into()?,
            p: p.try_into()?,
            q: q.try_into()?,
        };

        Ok(RsaKeypair { public, private })
    }
}

#[cfg(feature = "rsa")]
impl<D> TryFrom<&RsaKeypair> for pkcs1v15::SigningKey<D>
where
    D: Digest + AssociatedOid,
{
    type Error = Error;

    fn try_from(keypair: &RsaKeypair) -> Result<pkcs1v15::SigningKey<D>> {
        Ok(pkcs1v15::SigningKey::new(keypair.try_into()?))
    }
}