1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
use std::collections::HashMap;
use std::fmt::{self, Debug};
use std::ops::Deref;
use std::rc::Rc;
use super::context::RuleContext;
use super::crawlers::{BaseCrawler, Crawler};
use crate::core::dialects::base::Dialect;
use crate::core::errors::SQLLintError;
use crate::core::parser::segments::base::Segment;
// Assuming BaseSegment, LintFix, and SQLLintError are defined elsewhere.
#[derive(Clone)]
pub struct LintResult {
anchor: Option<Box<dyn Segment>>,
pub fixes: Vec<LintFix>,
memory: Option<HashMap<String, String>>, // Adjust type as needed
description: Option<String>,
source: String,
}
impl LintResult {
pub fn new(
anchor: Option<Box<dyn Segment>>,
fixes: Vec<LintFix>,
memory: Option<HashMap<String, String>>, // Adjust type as needed
description: Option<String>,
source: Option<String>,
) -> Self {
// let fixes = fixes.into_iter().filter(|f| !f.is_trivial()).collect();
LintResult { anchor, fixes, memory, description, source: source.unwrap_or_default() }
}
pub fn to_linting_error(&self, rule_description: &'static str) -> Option<SQLLintError> {
let _anchor = self.anchor.as_ref()?;
SQLLintError {
description: self.description.clone().unwrap_or(rule_description.to_string()),
}
.into()
}
}
impl Debug for LintResult {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match &self.anchor {
None => write!(f, "LintResult(<empty>)"),
Some(anchor) => {
let fix_coda = if !self.fixes.is_empty() {
format!("+{}F", self.fixes.len())
} else {
"".to_string()
};
match &self.description {
Some(desc) => {
if !self.source.is_empty() {
write!(
f,
"LintResult({} [{}]: {:?}{})",
desc, self.source, anchor, fix_coda
)
} else {
write!(f, "LintResult({}: {:?}{})", desc, anchor, fix_coda)
}
}
None => write!(f, "LintResult({:?}{})", anchor, fix_coda),
}
}
}
}
}
/// One of `create_before`, `create_after`, `replace`, `delete` to indicate the
/// kind of fix required.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum EditType {
CreateBefore,
CreateAfter,
Replace,
Delete,
}
/// A class to hold a potential fix to a linting violation.
///
/// Args:
/// edit_type (:obj:`str`): One of `create_before`, `create_after`,
/// `replace`, `delete` to indicate the kind of fix this represents.
/// anchor (:obj:`BaseSegment`): A segment which represents
/// the *position* that this fix should be applied at. For deletions
/// it represents the segment to delete, for creations it implies
/// the position to create at (with the existing element at this
/// position to be moved *after* the edit), for a `replace` it
/// implies the segment to be replaced.
/// edit (iterable of :obj:`BaseSegment`, optional): For `replace` and
/// `create` fixes, this holds the iterable of segments to create
/// or replace at the given `anchor` point.
/// source (iterable of :obj:`BaseSegment`, optional): For `replace` and
/// `create` fixes, this holds iterable of segments that provided
/// code. IMPORTANT: The linter uses this to prevent copying
/// material from templated areas.
#[derive(Debug, Clone)]
pub struct LintFix {
pub edit_type: EditType,
pub anchor: Box<dyn Segment>,
pub edit: Option<Vec<Box<dyn Segment>>>,
pub source: Vec<Box<dyn Segment>>,
}
impl LintFix {
fn new(
edit_type: EditType,
anchor: Box<dyn Segment>,
edit: Option<Vec<Box<dyn Segment>>>,
source: Option<Vec<Box<dyn Segment>>>,
) -> Self {
// If `edit` is provided, copy all elements and strip position markers.
let mut clean_edit = None;
if let Some(mut edit) = edit {
// Developer Note: Ensure position markers are unset for all edit segments.
// We rely on realignment to make position markers later in the process.
for seg in &mut edit {
if seg.get_position_marker().is_some() {
// assuming `pos_marker` is a field of `BaseSegment`
eprintln!(
"Developer Note: Edit segment found with preset position marker. These \
should be unset and calculated later."
);
// assuming `pos_marker` is Option-like and can be set to None
seg.set_position_marker(None);
};
}
clean_edit = Some(edit);
}
// If `source` is provided, filter segments with position markers.
let clean_source = source.map_or(Vec::new(), |source| {
source.into_iter().filter(|seg| seg.get_position_marker().is_some()).collect()
});
LintFix { edit_type, anchor, edit: clean_edit, source: clean_source }
}
pub fn create_before(anchor: Box<dyn Segment>, edit_segments: Vec<Box<dyn Segment>>) -> Self {
Self::new(EditType::CreateBefore, anchor, edit_segments.into(), None)
}
pub fn create_after(
anchor: Box<dyn Segment>,
edit_segments: Vec<Box<dyn Segment>>,
source: Option<Vec<Box<dyn Segment>>>,
) -> Self {
Self::new(EditType::CreateAfter, anchor, edit_segments.into(), source)
}
pub fn replace(
anchor_segment: Box<dyn Segment>,
edit_segments: Vec<Box<dyn Segment>>,
source: Option<Vec<Box<dyn Segment>>>,
) -> Self {
Self::new(EditType::Replace, anchor_segment, Some(edit_segments), source)
}
pub fn delete(anchor_segment: Box<dyn Segment>) -> Self {
Self::new(EditType::Delete, anchor_segment, None, None)
}
/// Return whether this a valid source only edit.
pub fn is_just_source_edit(&self) -> bool {
if let Some(edit) = &self.edit {
self.edit_type == EditType::Replace
&& edit.len() == 1
&& edit[0].get_raw() == self.anchor.get_raw()
} else {
false
}
}
}
impl PartialEq for LintFix {
fn eq(&self, other: &Self) -> bool {
// Check if edit_types are equal
if self.edit_type != other.edit_type {
return false;
}
// Check if anchor.class_types are equal
if self.anchor.get_type() != other.anchor.get_type() {
return false;
}
// Check if anchor.uuids are equal
if self.anchor.get_uuid() != other.anchor.get_uuid() {
return false;
}
// Compare edits if they exist
if let Some(self_edit) = &self.edit {
if let Some(other_edit) = &other.edit {
// Check lengths
if self_edit.len() != other_edit.len() {
return false;
}
// Compare raw and source_fixes for each corresponding BaseSegment
for (self_base_segment, other_base_segment) in self_edit.iter().zip(other_edit) {
if self_base_segment.get_raw() != other_base_segment.get_raw()
|| self_base_segment.get_source_fixes()
!= other_base_segment.get_source_fixes()
{
return false;
}
}
} else {
// self has edit, other doesn't
return false;
}
} else if other.edit.is_some() {
// other has edit, self doesn't
return false;
}
// If none of the above conditions were met, objects are equal
true
}
}
pub trait Rule: Debug + 'static {
fn lint_phase(&self) -> &'static str {
"main"
}
fn description(&self) -> &'static str {
"write description"
}
fn eval(&self, rule_cx: RuleContext) -> Vec<LintResult>;
fn is_fix_compatible(&self) -> bool {
false
}
fn crawl_behaviour(&self) -> Crawler;
fn crawl(
&self,
dialect: Dialect,
fix: bool,
tree: Box<dyn Segment>,
) -> (Vec<SQLLintError>, Vec<LintFix>) {
let root_context = RuleContext { dialect, fix, segment: tree, ..<_>::default() };
let mut vs = Vec::new();
let mut fixes = Vec::new();
for context in self.crawl_behaviour().crawl(root_context) {
let resp = self.eval(context);
let mut new_lerrs = Vec::new();
let mut new_fixes = Vec::new();
if resp.is_empty() {
// Assume this means no problems (also means no memory)
} else {
for elem in resp {
self.process_lint_result(elem, &mut new_lerrs, &mut new_fixes);
}
}
// Consume the new results
vs.extend(new_lerrs);
fixes.extend(new_fixes);
}
(vs, fixes)
}
fn process_lint_result(
&self,
res: LintResult,
new_lerrs: &mut Vec<SQLLintError>,
new_fixes: &mut Vec<LintFix>,
) {
let ignored = false;
if let Some(lerr) = res.to_linting_error(self.description()) {
new_lerrs.push(lerr);
}
if !ignored {
new_fixes.extend(res.fixes);
}
}
}
#[derive(Debug, Clone)]
pub struct ErasedRule {
erased: Rc<dyn Rule>,
}
impl Deref for ErasedRule {
type Target = dyn Rule;
fn deref(&self) -> &Self::Target {
self.erased.as_ref()
}
}
pub trait Erased {
type Erased;
fn erased(self) -> Self::Erased;
}
impl<T: Rule> Erased for T {
type Erased = ErasedRule;
fn erased(self) -> Self::Erased {
ErasedRule { erased: Rc::new(self) }
}
}