sqruff_lib_core/parser/lexer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
use std::borrow::Cow;
use std::fmt::Debug;
use std::ops::Range;
use fancy_regex::Regex;
use super::markers::PositionMarker;
use super::segments::base::{ErasedSegment, SegmentBuilder, Tables};
use crate::dialects::base::Dialect;
use crate::dialects::syntax::SyntaxKind;
use crate::errors::{SQLLexError, ValueError};
use crate::slice_helpers::{is_zero_slice, offset_slice};
use crate::templaters::base::TemplatedFile;
/// An element matched during lexing.
#[derive(Debug, Clone)]
pub struct Element<'a> {
name: &'static str,
text: Cow<'a, str>,
syntax_kind: SyntaxKind,
}
impl<'a> Element<'a> {
fn new(name: &'static str, syntax_kind: SyntaxKind, text: impl Into<Cow<'a, str>>) -> Self {
Self {
name,
syntax_kind,
text: text.into(),
}
}
}
/// A LexedElement, bundled with it's position in the templated file.
#[derive(Debug)]
pub struct TemplateElement<'a> {
raw: Cow<'a, str>,
template_slice: Range<usize>,
matcher: Info,
}
#[derive(Debug)]
struct Info {
name: &'static str,
syntax_kind: SyntaxKind,
}
impl<'a> TemplateElement<'a> {
/// Make a TemplateElement from a LexedElement.
pub fn from_element(element: Element<'a>, template_slice: Range<usize>) -> Self {
TemplateElement {
raw: element.text,
template_slice,
matcher: Info {
name: element.name,
syntax_kind: element.syntax_kind,
},
}
}
pub fn to_segment(
&self,
pos_marker: PositionMarker,
subslice: Option<Range<usize>>,
) -> ErasedSegment {
let slice = subslice.map_or_else(|| self.raw.as_ref(), |slice| &self.raw[slice]);
SegmentBuilder::token(0, slice, self.matcher.syntax_kind)
.with_position(pos_marker)
.finish()
}
}
/// A class to hold matches from the lexer.
#[derive(Debug)]
pub struct Match<'a> {
pub forward_string: &'a str,
pub elements: Vec<Element<'a>>,
}
#[derive(Debug, Clone)]
pub struct Matcher {
pattern: Pattern,
subdivider: Option<Pattern>,
trim_post_subdivide: Option<Pattern>,
}
impl Matcher {
pub const fn new(pattern: Pattern) -> Self {
Self {
pattern,
subdivider: None,
trim_post_subdivide: None,
}
}
pub const fn string(
name: &'static str,
pattern: &'static str,
syntax_kind: SyntaxKind,
) -> Self {
Self::new(Pattern::string(name, pattern, syntax_kind))
}
pub fn regex(name: &'static str, pattern: &'static str, syntax_kind: SyntaxKind) -> Self {
Self::new(Pattern::regex(name, pattern, syntax_kind))
}
pub fn subdivider(mut self, subdivider: Pattern) -> Self {
self.subdivider = Some(subdivider);
self
}
pub fn post_subdivide(mut self, trim_post_subdivide: Pattern) -> Self {
self.trim_post_subdivide = Some(trim_post_subdivide);
self
}
pub fn name(&self) -> &'static str {
self.pattern.name
}
pub fn matches<'a>(&self, forward_string: &'a str) -> Match<'a> {
match self.pattern.matches(forward_string) {
Some(matched) => {
let new_elements = self.subdivide(matched, self.pattern.syntax_kind);
Match {
forward_string: &forward_string[matched.len()..],
elements: new_elements,
}
}
None => Match {
forward_string,
elements: Vec::new(),
},
}
}
fn subdivide<'a>(&self, matched: &'a str, matched_kind: SyntaxKind) -> Vec<Element<'a>> {
match &self.subdivider {
Some(subdivider) => {
let mut elem_buff = Vec::new();
let mut str_buff = matched;
while !str_buff.is_empty() {
let Some(div_pos) = subdivider.search(str_buff) else {
let mut trimmed_elems = self.trim_match(str_buff);
elem_buff.append(&mut trimmed_elems);
break;
};
let mut trimmed_elems = self.trim_match(&str_buff[..div_pos.start]);
let div_elem = Element::new(
subdivider.name,
subdivider.syntax_kind,
&str_buff[div_pos.start..div_pos.end],
);
elem_buff.append(&mut trimmed_elems);
elem_buff.push(div_elem);
str_buff = &str_buff[div_pos.end..];
}
elem_buff
}
None => {
vec![Element::new(self.name(), matched_kind, matched)]
}
}
}
fn trim_match<'a>(&self, matched_str: &'a str) -> Vec<Element<'a>> {
let Some(trim_post_subdivide) = &self.trim_post_subdivide else {
return Vec::new();
};
let mk_element = |text| {
Element::new(
trim_post_subdivide.name,
trim_post_subdivide.syntax_kind,
text,
)
};
let mut elem_buff = Vec::new();
let mut content_buff = String::new();
let mut str_buff = matched_str;
while !str_buff.is_empty() {
let Some(trim_pos) = trim_post_subdivide.search(str_buff) else {
break;
};
let start = trim_pos.start;
let end = trim_pos.end;
if start == 0 {
elem_buff.push(mk_element(&str_buff[..end]));
str_buff = str_buff[end..].into();
} else if end == str_buff.len() {
let raw = format!("{}{}", content_buff, &str_buff[..start]);
elem_buff.push(Element::new(
trim_post_subdivide.name,
trim_post_subdivide.syntax_kind,
raw,
));
elem_buff.push(mk_element(&str_buff[start..end]));
content_buff.clear();
str_buff = "";
} else {
content_buff.push_str(&str_buff[..end]);
str_buff = &str_buff[end..];
}
}
if !content_buff.is_empty() || !str_buff.is_empty() {
let raw = format!("{}{}", content_buff, str_buff);
elem_buff.push(Element::new(
self.pattern.name,
self.pattern.syntax_kind,
raw,
));
}
elem_buff
}
}
#[derive(Debug, Clone)]
pub struct Pattern {
name: &'static str,
syntax_kind: SyntaxKind,
kind: SearchPatternKind,
}
#[derive(Debug, Clone)]
pub enum SearchPatternKind {
String(&'static str),
Regex(Regex),
}
impl Pattern {
pub const fn string(
name: &'static str,
template: &'static str,
syntax_kind: SyntaxKind,
) -> Self {
Self {
name,
syntax_kind,
kind: SearchPatternKind::String(template),
}
}
pub fn regex(name: &'static str, regex: &'static str, syntax_kind: SyntaxKind) -> Self {
Self {
name,
syntax_kind,
kind: SearchPatternKind::Regex(Regex::new(regex).unwrap()),
}
}
fn matches<'a>(&self, forward_string: &'a str) -> Option<&'a str> {
match self.kind {
SearchPatternKind::String(template) => {
if forward_string.starts_with(template) {
return Some(template);
}
}
SearchPatternKind::Regex(ref template) => {
if let Ok(Some(matched)) = template.find(forward_string) {
if matched.start() == 0 {
return Some(matched.as_str());
}
}
}
};
None
}
fn search(&self, forward_string: &str) -> Option<Range<usize>> {
match &self.kind {
SearchPatternKind::String(template) => forward_string
.find(template)
.map(|start| start..start + template.len()),
SearchPatternKind::Regex(template) => {
if let Ok(Some(matched)) = template.find(forward_string) {
return Some(matched.range());
}
None
}
}
}
}
/// The Lexer class actually does the lexing step.
pub struct Lexer<'a> {
dialect: &'a Dialect,
last_resort_lexer: Matcher,
}
impl<'a> From<&'a Dialect> for Lexer<'a> {
fn from(dialect: &'a Dialect) -> Self {
Lexer::new(dialect)
}
}
pub enum StringOrTemplate<'a> {
String(&'a str),
Template(TemplatedFile),
}
impl<'a> Lexer<'a> {
/// Create a new lexer.
pub fn new(dialect: &'a Dialect) -> Self {
Lexer {
dialect,
last_resort_lexer: Matcher::regex("<unlexable>", r"[^\t\n.]*", SyntaxKind::Unlexable),
}
}
pub fn lex(
&self,
tables: &Tables,
raw: StringOrTemplate,
) -> Result<(Vec<ErasedSegment>, Vec<SQLLexError>), ValueError> {
// Make sure we've got a string buffer and a template regardless of what was
// passed in.
let template;
let mut str_buff = match raw {
StringOrTemplate::String(s) => {
template = s.into();
s
}
StringOrTemplate::Template(slot) => {
template = slot;
template.templated_str.as_ref().unwrap()
}
};
// Lex the string to get a tuple of LexedElement
let mut element_buffer: Vec<Element> = Vec::new();
let lexer_matchers = self.dialect.lexer_matchers();
loop {
let mut res = Lexer::lex_match(str_buff, lexer_matchers);
element_buffer.append(&mut res.elements);
if res.forward_string.is_empty() {
break;
}
// If we STILL can't match, then just panic out.
let mut resort_res = self.last_resort_lexer.matches(str_buff);
if !resort_res.elements.is_empty() {
break;
}
str_buff = resort_res.forward_string;
element_buffer.append(&mut resort_res.elements);
}
// Map tuple LexedElement to list of TemplateElement.
// This adds the template_slice to the object.
let templated_buffer = Lexer::map_template_slices(element_buffer, &template);
// Turn lexed elements into segments.
let mut segments = self.elements_to_segments(templated_buffer, &template);
for seg in &mut segments {
seg.get_mut().set_id(tables.next_id())
}
Ok((segments, Vec::new()))
}
/// Generate any lexing errors for any un-lex-ables.
///
/// TODO: Taking in an iterator, also can make the typing better than use
/// unwrap.
#[allow(dead_code)]
fn violations_from_segments(segments: Vec<ErasedSegment>) -> Vec<SQLLexError> {
segments
.into_iter()
.filter(|s| s.is_type(SyntaxKind::Unlexable))
.map(|s| {
SQLLexError::new(
format!(
"Unable to lex characters: {}",
s.raw().chars().take(10).collect::<String>()
),
s.get_position_marker().unwrap().clone(),
)
})
.collect()
}
/// Iteratively match strings using the selection of sub-matchers.
fn lex_match<'b>(mut forward_string: &'b str, lexer_matchers: &[Matcher]) -> Match<'b> {
let mut elem_buff = Vec::new();
'main: loop {
if forward_string.is_empty() {
return Match {
forward_string,
elements: elem_buff,
};
}
for matcher in lexer_matchers {
let mut match_result = matcher.matches(forward_string);
if !match_result.elements.is_empty() {
elem_buff.append(&mut match_result.elements);
forward_string = match_result.forward_string;
continue 'main;
}
}
return Match {
forward_string,
elements: elem_buff,
};
}
}
/// Create a tuple of TemplateElement from a tuple of LexedElement.
///
/// This adds slices in the templated file to the original lexed
/// elements. We'll need this to work out the position in the source
/// file.
/// TODO Can this vec be turned into an iterator and return iterator to make
/// lazy?
fn map_template_slices<'b>(
elements: Vec<Element<'b>>,
template: &TemplatedFile,
) -> Vec<TemplateElement<'b>> {
let mut idx = 0;
let mut templated_buff: Vec<TemplateElement> = Vec::with_capacity(elements.len());
for element in elements {
let template_slice = offset_slice(idx, element.text.len());
idx += element.text.len();
let templated_string = template.get_templated_string().unwrap();
if templated_string[template_slice.clone()] != element.text {
panic!(
"Template and lexed elements do not match. This should never happen {:?} != \
{:?}",
element.text, &templated_string[template_slice]
);
}
templated_buff.push(TemplateElement::from_element(element, template_slice));
}
templated_buff
}
/// Convert a tuple of lexed elements into a tuple of segments.
fn elements_to_segments(
&self,
elements: Vec<TemplateElement>,
templated_file: &TemplatedFile,
) -> Vec<ErasedSegment> {
let mut segments = iter_segments(elements, templated_file);
// Add an end of file marker
let position_maker = segments
.last()
.map(|segment| segment.get_position_marker().unwrap().end_point_marker())
.unwrap_or_else(|| {
PositionMarker::from_point(0, 0, templated_file.clone(), None, None)
});
segments.push(
SegmentBuilder::token(0, "", SyntaxKind::EndOfFile)
.with_position(position_maker)
.finish(),
);
segments
}
}
fn iter_segments(
lexed_elements: Vec<TemplateElement>,
templated_file: &TemplatedFile,
) -> Vec<ErasedSegment> {
let mut result: Vec<ErasedSegment> = Vec::with_capacity(lexed_elements.len());
// An index to track where we've got to in the templated file.
let mut tfs_idx = 0;
// We keep a map of previous block locations in case they re-occur.
// let block_stack = BlockTracker()
let templated_file_slices = &templated_file.sliced_file;
// Now work out source slices, and add in template placeholders.
for element in lexed_elements.into_iter() {
let consumed_element_length = 0;
let mut stashed_source_idx = None;
for (idx, tfs) in templated_file_slices
.iter()
.skip(tfs_idx)
.enumerate()
.map(|(i, tfs)| (i + tfs_idx, tfs))
{
// Is it a zero slice?
if is_zero_slice(&tfs.templated_slice) {
let _slice = if idx + 1 < templated_file_slices.len() {
templated_file_slices[idx + 1].clone().into()
} else {
None
};
_handle_zero_length_slice();
continue;
}
if tfs.slice_type == "literal" {
let tfs_offset = tfs.source_slice.start - tfs.templated_slice.start;
// NOTE: Greater than OR EQUAL, to include the case of it matching
// length exactly.
if element.template_slice.end <= tfs.templated_slice.end {
let slice_start = stashed_source_idx.unwrap_or_else(|| {
element.template_slice.start + consumed_element_length + tfs_offset
});
result.push(element.to_segment(
PositionMarker::new(
slice_start..element.template_slice.end + tfs_offset,
element.template_slice.clone(),
templated_file.clone(),
None,
None,
),
Some(consumed_element_length..element.raw.len()),
));
// If it was an exact match, consume the templated element too.
if element.template_slice.end == tfs.templated_slice.end {
tfs_idx += 1
}
// In any case, we're done with this element. Move on
break;
} else if element.template_slice.start == tfs.templated_slice.end {
// Did we forget to move on from the last tfs and there's
// overlap?
// NOTE: If the rest of the logic works, this should never
// happen.
// lexer_logger.debug(" NOTE: Missed Skip") # pragma: no cover
continue;
} else {
// This means that the current lexed element spans across
// multiple templated file slices.
// lexer_logger.debug(" Consuming whole spanning literal")
// This almost certainly means there's a templated element
// in the middle of a whole lexed element.
// What we do here depends on whether we're allowed to split
// lexed elements. This is basically only true if it's whitespace.
// NOTE: We should probably make this configurable on the
// matcher object, but for now we're going to look for the
// name of the lexer.
if element.matcher.name == "whitespace" {
if stashed_source_idx.is_some() {
panic!("Found literal whitespace with stashed idx!")
}
let incremental_length =
tfs.templated_slice.end - element.template_slice.start;
result.push(element.to_segment(
PositionMarker::new(
element.template_slice.start + consumed_element_length + tfs_offset
..tfs.templated_slice.end + tfs_offset,
element.template_slice.clone(),
templated_file.clone(),
None,
None,
),
offset_slice(consumed_element_length, incremental_length).into(),
));
} else {
// We can't split it. We're going to end up yielding a segment
// which spans multiple slices. Stash the type, and if we haven't
// set the start yet, stash it too.
// lexer_logger.debug(" Spilling over literal slice.")
if stashed_source_idx.is_none() {
stashed_source_idx = (element.template_slice.start + idx).into();
// lexer_logger.debug(
// " Stashing a source start. %s", stashed_source_idx
// )
continue;
}
}
}
} else if matches!(tfs.slice_type.as_str(), "templated" | "block_start") {
// Found a templated slice. Does it have length in the templated file?
// If it doesn't, then we'll pick it up next.
if !is_zero_slice(&tfs.templated_slice) {
// If it's a block_start. Append to the block stack.
// NOTE: This is rare, but call blocks do occasionally
// have length (and so don't get picked up by
// _handle_zero_length_slice)
if tfs.slice_type == "block_start" {
unimplemented!()
// block_stack.enter(tfs.source_slice)
}
// Is our current element totally contained in this slice?
if element.template_slice.end <= tfs.templated_slice.end {
// lexer_logger.debug(" Contained templated slice.")
// Yes it is. Add lexed element with source slices as the whole
// span of the source slice for the file slice.
// If we've got an existing stashed source start, use that
// as the start of the source slice.
let slice_start = if let Some(stashed_source_idx) = stashed_source_idx {
stashed_source_idx
} else {
tfs.source_slice.start + consumed_element_length
};
result.push(element.to_segment(
PositionMarker::new(
slice_start..tfs.source_slice.end,
element.template_slice.clone(),
templated_file.clone(),
None,
None,
),
Some(consumed_element_length..element.raw.len()),
));
// If it was an exact match, consume the templated element too.
if element.template_slice.end == tfs.templated_slice.end {
tfs_idx += 1
}
// Carry on to the next lexed element
break;
} else {
unimplemented!()
}
}
}
}
}
result
}
fn _handle_zero_length_slice() {
// impl me
}
#[cfg(test)]
mod tests {
use super::*;
/// Assert that a matcher does or doesn't work on a string.
///
/// The optional `matchstring` argument, which can optionally
/// be None, allows to either test positive matching of a
/// particular string or negative matching (that it explicitly)
/// doesn't match.
fn assert_matches(in_string: &str, matcher: &Matcher, match_string: Option<&str>) {
let res = matcher.matches(in_string);
if let Some(match_string) = match_string {
assert_eq!(res.forward_string, &in_string[match_string.len()..]);
assert_eq!(res.elements.len(), 1);
assert_eq!(res.elements[0].text, match_string);
} else {
assert_eq!(res.forward_string, in_string);
assert_eq!(res.elements.len(), 0);
}
}
#[test]
fn test_parser_lexer_trim_post_subdivide() {
let matcher: Vec<Matcher> = vec![Matcher::regex(
"function_script_terminator",
r";\s+(?!\*)\/(?!\*)|\s+(?!\*)\/(?!\*)",
SyntaxKind::StatementTerminator,
)
.subdivider(Pattern::string("semicolon", ";", SyntaxKind::Semicolon))
.post_subdivide(Pattern::regex(
"newline",
r"(\n|\r\n)+",
SyntaxKind::Newline,
))];
let res = Lexer::lex_match(";\n/\n", &matcher);
assert_eq!(res.elements[0].text, ";");
assert_eq!(res.elements[1].text, "\n");
assert_eq!(res.elements[2].text, "/");
assert_eq!(res.elements.len(), 3);
}
/// Test the RegexLexer.
#[test]
fn test_parser_lexer_regex() {
let tests = &[
("fsaljk", "f", "f"),
("fsaljk", r"f", "f"),
("fsaljk", r"[fas]*", "fsa"),
// Matching whitespace segments
(" \t fsaljk", r"[^\S\r\n]*", " \t "),
// Matching whitespace segments (with a newline)
(" \t \n fsaljk", r"[^\S\r\n]*", " \t "),
// Matching quotes containing stuff
(
"'something boring' \t \n fsaljk",
r"'[^']*'",
"'something boring'",
),
(
"' something exciting \t\n ' \t \n fsaljk",
r"'[^']*'",
"' something exciting \t\n '",
),
];
for (raw, reg, res) in tests {
let matcher = Matcher::regex("test", reg, SyntaxKind::Word);
assert_matches(raw, &matcher, Some(res));
}
}
/// Test the lexer string
#[test]
fn test_parser_lexer_string() {
let matcher = Matcher::string("dot", ".", SyntaxKind::Dot);
assert_matches(".fsaljk", &matcher, Some("."));
assert_matches("fsaljk", &matcher, None);
}
/// Test the RepeatedMultiMatcher
#[test]
fn test_parser_lexer_lex_match() {
let matchers: Vec<Matcher> = vec![
Matcher::string("dot", ".", SyntaxKind::Dot),
Matcher::regex("test", "#[^#]*#", SyntaxKind::Dash),
];
let res = Lexer::lex_match("..#..#..#", &matchers);
assert_eq!(res.forward_string, "#");
assert_eq!(res.elements.len(), 5);
assert_eq!(res.elements[2].text, "#..#");
}
}