1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
use crate::connection::intmap::IntMap;
use crate::connection::{execute, ConnectionState};
use crate::error::Error;
use crate::from_row::FromRow;
use crate::type_info::DataType;
use crate::SqliteTypeInfo;
use sqlx_core::HashMap;
use std::collections::HashSet;
use std::str::from_utf8;
// affinity
const SQLITE_AFF_NONE: u8 = 0x40; /* '@' */
const SQLITE_AFF_BLOB: u8 = 0x41; /* 'A' */
const SQLITE_AFF_TEXT: u8 = 0x42; /* 'B' */
const SQLITE_AFF_NUMERIC: u8 = 0x43; /* 'C' */
const SQLITE_AFF_INTEGER: u8 = 0x44; /* 'D' */
const SQLITE_AFF_REAL: u8 = 0x45; /* 'E' */
// opcodes
const OP_INIT: &str = "Init";
const OP_GOTO: &str = "Goto";
const OP_DECR_JUMP_ZERO: &str = "DecrJumpZero";
const OP_DELETE: &str = "Delete";
const OP_ELSE_EQ: &str = "ElseEq";
const OP_EQ: &str = "Eq";
const OP_END_COROUTINE: &str = "EndCoroutine";
const OP_FILTER: &str = "Filter";
const OP_FK_IF_ZERO: &str = "FkIfZero";
const OP_FOUND: &str = "Found";
const OP_GE: &str = "Ge";
const OP_GO_SUB: &str = "Gosub";
const OP_GT: &str = "Gt";
const OP_IDX_GE: &str = "IdxGE";
const OP_IDX_GT: &str = "IdxGT";
const OP_IDX_LE: &str = "IdxLE";
const OP_IDX_LT: &str = "IdxLT";
const OP_IF: &str = "If";
const OP_IF_NO_HOPE: &str = "IfNoHope";
const OP_IF_NOT: &str = "IfNot";
const OP_IF_NOT_OPEN: &str = "IfNotOpen";
const OP_IF_NOT_ZERO: &str = "IfNotZero";
const OP_IF_NULL_ROW: &str = "IfNullRow";
const OP_IF_POS: &str = "IfPos";
const OP_IF_SMALLER: &str = "IfSmaller";
const OP_INCR_VACUUM: &str = "IncrVacuum";
const OP_INIT_COROUTINE: &str = "InitCoroutine";
const OP_IS_NULL: &str = "IsNull";
const OP_IS_NULL_OR_TYPE: &str = "IsNullOrType";
const OP_LAST: &str = "Last";
const OP_LE: &str = "Le";
const OP_LT: &str = "Lt";
const OP_MUST_BE_INT: &str = "MustBeInt";
const OP_NE: &str = "Ne";
const OP_NEXT: &str = "Next";
const OP_NO_CONFLICT: &str = "NoConflict";
const OP_NOT_EXISTS: &str = "NotExists";
const OP_NOT_NULL: &str = "NotNull";
const OP_ONCE: &str = "Once";
const OP_PREV: &str = "Prev";
const OP_PROGRAM: &str = "Program";
const OP_RETURN: &str = "Return";
const OP_REWIND: &str = "Rewind";
const OP_ROW_DATA: &str = "RowData";
const OP_ROW_SET_READ: &str = "RowSetRead";
const OP_ROW_SET_TEST: &str = "RowSetTest";
const OP_SEEK_GE: &str = "SeekGE";
const OP_SEEK_GT: &str = "SeekGT";
const OP_SEEK_LE: &str = "SeekLE";
const OP_SEEK_LT: &str = "SeekLT";
const OP_SEEK_ROW_ID: &str = "SeekRowid";
const OP_SEEK_SCAN: &str = "SeekScan";
const OP_SEQUENCE: &str = "Sequence";
const OP_SEQUENCE_TEST: &str = "SequenceTest";
const OP_SORT: &str = "Sort";
const OP_SORTER_DATA: &str = "SorterData";
const OP_SORTER_INSERT: &str = "SorterInsert";
const OP_SORTER_NEXT: &str = "SorterNext";
const OP_SORTER_OPEN: &str = "SorterOpen";
const OP_SORTER_SORT: &str = "SorterSort";
const OP_V_FILTER: &str = "VFilter";
const OP_V_NEXT: &str = "VNext";
const OP_YIELD: &str = "Yield";
const OP_JUMP: &str = "Jump";
const OP_COLUMN: &str = "Column";
const OP_MAKE_RECORD: &str = "MakeRecord";
const OP_INSERT: &str = "Insert";
const OP_IDX_INSERT: &str = "IdxInsert";
const OP_OPEN_DUP: &str = "OpenDup";
const OP_OPEN_PSEUDO: &str = "OpenPseudo";
const OP_OPEN_READ: &str = "OpenRead";
const OP_OPEN_WRITE: &str = "OpenWrite";
const OP_OPEN_EPHEMERAL: &str = "OpenEphemeral";
const OP_OPEN_AUTOINDEX: &str = "OpenAutoindex";
const OP_AGG_FINAL: &str = "AggFinal";
const OP_AGG_VALUE: &str = "AggValue";
const OP_AGG_STEP: &str = "AggStep";
const OP_FUNCTION: &str = "Function";
const OP_MOVE: &str = "Move";
const OP_COPY: &str = "Copy";
const OP_SCOPY: &str = "SCopy";
const OP_NULL: &str = "Null";
const OP_NULL_ROW: &str = "NullRow";
const OP_INT_COPY: &str = "IntCopy";
const OP_CAST: &str = "Cast";
const OP_STRING8: &str = "String8";
const OP_INT64: &str = "Int64";
const OP_INTEGER: &str = "Integer";
const OP_REAL: &str = "Real";
const OP_NOT: &str = "Not";
const OP_BLOB: &str = "Blob";
const OP_VARIABLE: &str = "Variable";
const OP_COUNT: &str = "Count";
const OP_ROWID: &str = "Rowid";
const OP_NEWROWID: &str = "NewRowid";
const OP_OR: &str = "Or";
const OP_AND: &str = "And";
const OP_BIT_AND: &str = "BitAnd";
const OP_BIT_OR: &str = "BitOr";
const OP_SHIFT_LEFT: &str = "ShiftLeft";
const OP_SHIFT_RIGHT: &str = "ShiftRight";
const OP_ADD: &str = "Add";
const OP_SUBTRACT: &str = "Subtract";
const OP_MULTIPLY: &str = "Multiply";
const OP_DIVIDE: &str = "Divide";
const OP_REMAINDER: &str = "Remainder";
const OP_CONCAT: &str = "Concat";
const OP_OFFSET_LIMIT: &str = "OffsetLimit";
const OP_RESULT_ROW: &str = "ResultRow";
const OP_HALT: &str = "Halt";
const OP_HALT_IF_NULL: &str = "HaltIfNull";
const MAX_LOOP_COUNT: u8 = 2;
const MAX_TOTAL_INSTRUCTION_COUNT: u32 = 100_000;
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
enum ColumnType {
Single {
datatype: DataType,
nullable: Option<bool>,
},
Record(IntMap<ColumnType>),
}
impl Default for ColumnType {
fn default() -> Self {
Self::Single {
datatype: DataType::Null,
nullable: None,
}
}
}
impl ColumnType {
fn null() -> Self {
Self::Single {
datatype: DataType::Null,
nullable: Some(true),
}
}
fn map_to_datatype(&self) -> DataType {
match self {
Self::Single { datatype, .. } => datatype.clone(),
Self::Record(_) => DataType::Null, //If we're trying to coerce to a regular Datatype, we can assume a Record is invalid for the context
}
}
fn map_to_nullable(&self) -> Option<bool> {
match self {
Self::Single { nullable, .. } => *nullable,
Self::Record(_) => None, //If we're trying to coerce to a regular Datatype, we can assume a Record is invalid for the context
}
}
}
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
enum RegDataType {
Single(ColumnType),
Int(i64),
}
impl RegDataType {
fn map_to_datatype(&self) -> DataType {
match self {
RegDataType::Single(d) => d.map_to_datatype(),
RegDataType::Int(_) => DataType::Int,
}
}
fn map_to_nullable(&self) -> Option<bool> {
match self {
RegDataType::Single(d) => d.map_to_nullable(),
RegDataType::Int(_) => Some(false),
}
}
fn map_to_columntype(&self) -> ColumnType {
match self {
RegDataType::Single(d) => d.clone(),
RegDataType::Int(_) => ColumnType::Single {
datatype: DataType::Int,
nullable: Some(false),
},
}
}
}
impl Default for RegDataType {
fn default() -> Self {
Self::Single(ColumnType::default())
}
}
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
struct TableDataType {
cols: IntMap<ColumnType>,
is_empty: Option<bool>,
}
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
enum CursorDataType {
Normal(i64),
Pseudo(i64),
}
impl CursorDataType {
fn columns(
&self,
tables: &IntMap<TableDataType>,
registers: &IntMap<RegDataType>,
) -> IntMap<ColumnType> {
match self {
Self::Normal(i) => match tables.get(i) {
Some(tab) => tab.cols.clone(),
None => IntMap::new(),
},
Self::Pseudo(i) => match registers.get(i) {
Some(RegDataType::Single(ColumnType::Record(r))) => r.clone(),
_ => IntMap::new(),
},
}
}
fn columns_ref<'s, 'r, 'o>(
&'s self,
tables: &'r IntMap<TableDataType>,
registers: &'r IntMap<RegDataType>,
) -> Option<&'o IntMap<ColumnType>>
where
's: 'o,
'r: 'o,
{
match self {
Self::Normal(i) => match tables.get(i) {
Some(tab) => Some(&tab.cols),
None => None,
},
Self::Pseudo(i) => match registers.get(i) {
Some(RegDataType::Single(ColumnType::Record(r))) => Some(r),
_ => None,
},
}
}
fn columns_mut<'s, 'r, 'o>(
&'s self,
tables: &'r mut IntMap<TableDataType>,
registers: &'r mut IntMap<RegDataType>,
) -> Option<&'o mut IntMap<ColumnType>>
where
's: 'o,
'r: 'o,
{
match self {
Self::Normal(i) => match tables.get_mut(i) {
Some(tab) => Some(&mut tab.cols),
None => None,
},
Self::Pseudo(i) => match registers.get_mut(i) {
Some(RegDataType::Single(ColumnType::Record(r))) => Some(r),
_ => None,
},
}
}
fn table_mut<'s, 'r, 'o>(
&'s self,
tables: &'r mut IntMap<TableDataType>,
) -> Option<&'o mut TableDataType>
where
's: 'o,
'r: 'o,
{
match self {
Self::Normal(i) => match tables.get_mut(i) {
Some(tab) => Some(tab),
None => None,
},
_ => None,
}
}
fn is_empty(&self, tables: &IntMap<TableDataType>) -> Option<bool> {
match self {
Self::Normal(i) => match tables.get(i) {
Some(tab) => tab.is_empty,
None => Some(true),
},
Self::Pseudo(_) => Some(false), //pseudo cursors have exactly one row
}
}
}
#[allow(clippy::wildcard_in_or_patterns)]
fn affinity_to_type(affinity: u8) -> DataType {
match affinity {
SQLITE_AFF_BLOB => DataType::Blob,
SQLITE_AFF_INTEGER => DataType::Int64,
SQLITE_AFF_NUMERIC => DataType::Numeric,
SQLITE_AFF_REAL => DataType::Float,
SQLITE_AFF_TEXT => DataType::Text,
SQLITE_AFF_NONE | _ => DataType::Null,
}
}
#[allow(clippy::wildcard_in_or_patterns)]
fn opcode_to_type(op: &str) -> DataType {
match op {
OP_REAL => DataType::Float,
OP_BLOB => DataType::Blob,
OP_AND | OP_OR => DataType::Bool,
OP_ROWID | OP_COUNT | OP_INT64 | OP_INTEGER => DataType::Int64,
OP_STRING8 => DataType::Text,
OP_COLUMN | _ => DataType::Null,
}
}
fn root_block_columns(
conn: &mut ConnectionState,
) -> Result<HashMap<(i64, i64), IntMap<ColumnType>>, Error> {
let table_block_columns: Vec<(i64, i64, i64, String, bool)> = execute::iter(
conn,
"SELECT s.dbnum, s.rootpage, col.cid as colnum, col.type, col.\"notnull\"
FROM (
select 1 dbnum, tss.* from temp.sqlite_schema tss
UNION ALL select 0 dbnum, mss.* from main.sqlite_schema mss
) s
JOIN pragma_table_info(s.name) AS col
WHERE s.type = 'table'
UNION ALL
SELECT s.dbnum, s.rootpage, idx.seqno as colnum, col.type, col.\"notnull\"
FROM (
select 1 dbnum, tss.* from temp.sqlite_schema tss
UNION ALL select 0 dbnum, mss.* from main.sqlite_schema mss
) s
JOIN pragma_index_info(s.name) AS idx
LEFT JOIN pragma_table_info(s.tbl_name) as col
ON col.cid = idx.cid
WHERE s.type = 'index'",
None,
false,
)?
.filter_map(|res| res.map(|either| either.right()).transpose())
.map(|row| FromRow::from_row(&row?))
.collect::<Result<Vec<_>, Error>>()?;
let mut row_info: HashMap<(i64, i64), IntMap<ColumnType>> = HashMap::new();
for (dbnum, block, colnum, datatype, notnull) in table_block_columns {
let row_info = row_info.entry((dbnum, block)).or_default();
row_info.insert(
colnum,
ColumnType::Single {
datatype: datatype.parse().unwrap_or(DataType::Null),
nullable: Some(!notnull),
},
);
}
return Ok(row_info);
}
#[derive(Debug, Clone, PartialEq)]
struct QueryState {
// The number of times each instruction has been visited
pub visited: Vec<u8>,
// A log of the order of execution of each instruction
pub history: Vec<usize>,
// State of the virtual machine
pub mem: MemoryState,
// Results published by the execution
pub result: Option<Vec<(Option<SqliteTypeInfo>, Option<bool>)>>,
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
struct MemoryState {
// Next instruction to execute
pub program_i: usize,
// Registers
pub r: IntMap<RegDataType>,
// Rows that pointers point to
pub p: IntMap<CursorDataType>,
// Table definitions pointed to by pointers
pub t: IntMap<TableDataType>,
}
struct BranchList {
states: Vec<QueryState>,
visited_branch_state: HashSet<MemoryState>,
}
impl BranchList {
pub fn new(state: QueryState) -> Self {
Self {
states: vec![state],
visited_branch_state: HashSet::new(),
}
}
pub fn push(&mut self, state: QueryState) {
if !self.visited_branch_state.contains(&state.mem) {
self.visited_branch_state.insert(state.mem.clone());
self.states.push(state);
}
}
pub fn pop(&mut self) -> Option<QueryState> {
self.states.pop()
}
}
// Opcode Reference: https://sqlite.org/opcode.html
pub(super) fn explain(
conn: &mut ConnectionState,
query: &str,
) -> Result<(Vec<SqliteTypeInfo>, Vec<Option<bool>>), Error> {
let root_block_cols = root_block_columns(conn)?;
let program: Vec<(i64, String, i64, i64, i64, Vec<u8>)> =
execute::iter(conn, &format!("EXPLAIN {}", query), None, false)?
.filter_map(|res| res.map(|either| either.right()).transpose())
.map(|row| FromRow::from_row(&row?))
.collect::<Result<Vec<_>, Error>>()?;
let program_size = program.len();
let mut logger =
crate::logger::QueryPlanLogger::new(query, &program, conn.log_settings.clone());
let mut states = BranchList::new(QueryState {
visited: vec![0; program_size],
history: Vec::new(),
result: None,
mem: MemoryState {
program_i: 0,
r: IntMap::new(),
t: IntMap::new(),
p: IntMap::new(),
},
});
let mut gas = MAX_TOTAL_INSTRUCTION_COUNT;
let mut result_states = Vec::new();
while let Some(mut state) = states.pop() {
while state.mem.program_i < program_size {
let (_, ref opcode, p1, p2, p3, ref p4) = program[state.mem.program_i];
state.history.push(state.mem.program_i);
//limit the number of 'instructions' that can be evaluated
if gas > 0 {
gas -= 1;
} else {
break;
}
if state.visited[state.mem.program_i] > MAX_LOOP_COUNT {
if logger.log_enabled() {
let program_history: Vec<&(i64, String, i64, i64, i64, Vec<u8>)> =
state.history.iter().map(|i| &program[*i]).collect();
logger.add_result((program_history, None));
}
//avoid (infinite) loops by breaking if we ever hit the same instruction twice
break;
}
state.visited[state.mem.program_i] += 1;
match &**opcode {
OP_INIT => {
// start at <p2>
state.mem.program_i = p2 as usize;
continue;
}
OP_GOTO => {
// goto <p2>
state.mem.program_i = p2 as usize;
continue;
}
OP_GO_SUB => {
// store current instruction in r[p1], goto <p2>
state
.mem
.r
.insert(p1, RegDataType::Int(state.mem.program_i as i64));
state.mem.program_i = p2 as usize;
continue;
}
OP_FK_IF_ZERO => {
// goto <p2> if no constraints are unsatisfied (assumed to be true)
state.mem.program_i = p2 as usize;
continue;
}
OP_DECR_JUMP_ZERO | OP_ELSE_EQ | OP_EQ | OP_FILTER | OP_FOUND | OP_GE | OP_GT
| OP_IDX_GE | OP_IDX_GT | OP_IDX_LE | OP_IDX_LT | OP_IF_NO_HOPE | OP_IF_NOT
| OP_IF_NOT_OPEN | OP_IF_NOT_ZERO | OP_IF_NULL_ROW | OP_IF_SMALLER
| OP_INCR_VACUUM | OP_IS_NULL | OP_IS_NULL_OR_TYPE | OP_LE | OP_LT | OP_NE
| OP_NEXT | OP_NO_CONFLICT | OP_NOT_EXISTS | OP_ONCE | OP_PREV | OP_PROGRAM
| OP_ROW_SET_READ | OP_ROW_SET_TEST | OP_SEEK_GE | OP_SEEK_GT | OP_SEEK_LE
| OP_SEEK_LT | OP_SEEK_ROW_ID | OP_SEEK_SCAN | OP_SEQUENCE_TEST
| OP_SORTER_NEXT | OP_V_FILTER | OP_V_NEXT => {
// goto <p2> or next instruction (depending on actual values)
let mut branch_state = state.clone();
branch_state.mem.program_i = p2 as usize;
states.push(branch_state);
state.mem.program_i += 1;
continue;
}
OP_NOT_NULL => {
// goto <p2> or next instruction (depending on actual values)
let might_branch = match state.mem.r.get(&p1) {
Some(r_p1) => !matches!(r_p1.map_to_datatype(), DataType::Null),
_ => false,
};
let might_not_branch = match state.mem.r.get(&p1) {
Some(r_p1) => !matches!(r_p1.map_to_nullable(), Some(false)),
_ => false,
};
if might_branch {
let mut branch_state = state.clone();
branch_state.mem.program_i = p2 as usize;
if let Some(RegDataType::Single(ColumnType::Single { nullable, .. })) =
branch_state.mem.r.get_mut(&p1)
{
*nullable = Some(false);
}
states.push(branch_state);
}
if might_not_branch {
state.mem.program_i += 1;
state
.mem
.r
.insert(p1, RegDataType::Single(ColumnType::default()));
continue;
} else {
break;
}
}
OP_MUST_BE_INT => {
// if p1 can be coerced to int, continue
// if p1 cannot be coerced to int, error if p2 == 0, else jump to p2
//don't bother checking actual types, just don't branch to instruction 0
if p2 != 0 {
let mut branch_state = state.clone();
branch_state.mem.program_i = p2 as usize;
states.push(branch_state);
}
state.mem.program_i += 1;
continue;
}
OP_IF => {
// goto <p2> if r[p1] is true (1) or r[p1] is null and p3 is nonzero
let might_branch = match state.mem.r.get(&p1) {
Some(RegDataType::Int(r_p1)) => *r_p1 != 0,
_ => true,
};
let might_not_branch = match state.mem.r.get(&p1) {
Some(RegDataType::Int(r_p1)) => *r_p1 == 0,
_ => true,
};
if might_branch {
let mut branch_state = state.clone();
branch_state.mem.program_i = p2 as usize;
if p3 == 0 {
branch_state.mem.r.insert(p1, RegDataType::Int(1));
}
states.push(branch_state);
}
if might_not_branch {
state.mem.program_i += 1;
if p3 == 0 {
state.mem.r.insert(p1, RegDataType::Int(0));
}
continue;
} else {
break;
}
}
OP_IF_POS => {
// goto <p2> if r[p1] is true (1) or r[p1] is null and p3 is nonzero
// as a workaround for large offset clauses, both branches will be attempted after 1 loop
let might_branch = match state.mem.r.get(&p1) {
Some(RegDataType::Int(r_p1)) => *r_p1 >= 1,
_ => true,
};
let might_not_branch = match state.mem.r.get(&p1) {
Some(RegDataType::Int(r_p1)) => *r_p1 < 1,
_ => true,
};
let loop_detected = state.visited[state.mem.program_i] > 1;
if might_branch || loop_detected {
let mut branch_state = state.clone();
branch_state.mem.program_i = p2 as usize;
if let Some(RegDataType::Int(r_p1)) = branch_state.mem.r.get_mut(&p1) {
*r_p1 -= 1;
}
states.push(branch_state);
}
if might_not_branch {
state.mem.program_i += 1;
continue;
} else if loop_detected {
state.mem.program_i += 1;
if matches!(state.mem.r.get_mut(&p1), Some(RegDataType::Int(..))) {
//forget the exact value, in case some later cares
state.mem.r.insert(
p1,
RegDataType::Single(ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(false),
}),
);
}
continue;
} else {
break;
}
}
OP_REWIND | OP_LAST | OP_SORT | OP_SORTER_SORT => {
// goto <p2> if cursor p1 is empty and p2 != 0, else next instruction
if p2 == 0 {
state.mem.program_i += 1;
continue;
}
if let Some(cursor) = state.mem.p.get(&p1) {
if matches!(cursor.is_empty(&state.mem.t), None | Some(true)) {
//only take this branch if the cursor is empty
let mut branch_state = state.clone();
branch_state.mem.program_i = p2 as usize;
if let Some(cur) = branch_state.mem.p.get(&p1) {
if let Some(tab) = cur.table_mut(&mut branch_state.mem.t) {
tab.is_empty = Some(true);
}
}
states.push(branch_state);
}
if matches!(cursor.is_empty(&state.mem.t), None | Some(false)) {
//only take this branch if the cursor is non-empty
state.mem.program_i += 1;
continue;
} else {
break;
}
}
if logger.log_enabled() {
let program_history: Vec<&(i64, String, i64, i64, i64, Vec<u8>)> =
state.history.iter().map(|i| &program[*i]).collect();
logger.add_result((program_history, None));
}
break;
}
OP_INIT_COROUTINE => {
// goto <p2> or next instruction (depending on actual values)
state.mem.r.insert(p1, RegDataType::Int(p3));
if p2 != 0 {
state.mem.program_i = p2 as usize;
} else {
state.mem.program_i += 1;
}
continue;
}
OP_END_COROUTINE => {
// jump to p2 of the yield instruction pointed at by register p1
if let Some(RegDataType::Int(yield_i)) = state.mem.r.get(&p1) {
if let Some((_, yield_op, _, yield_p2, _, _)) =
program.get(*yield_i as usize)
{
if OP_YIELD == yield_op.as_str() {
state.mem.program_i = (*yield_p2) as usize;
state.mem.r.remove(&p1);
continue;
} else {
if logger.log_enabled() {
let program_history: Vec<&(
i64,
String,
i64,
i64,
i64,
Vec<u8>,
)> = state.history.iter().map(|i| &program[*i]).collect();
logger.add_result((program_history, None));
}
break;
}
} else {
if logger.log_enabled() {
let program_history: Vec<&(i64, String, i64, i64, i64, Vec<u8>)> =
state.history.iter().map(|i| &program[*i]).collect();
logger.add_result((program_history, None));
}
break;
}
} else {
if logger.log_enabled() {
let program_history: Vec<&(i64, String, i64, i64, i64, Vec<u8>)> =
state.history.iter().map(|i| &program[*i]).collect();
logger.add_result((program_history, None));
}
break;
}
}
OP_RETURN => {
// jump to the instruction after the instruction pointed at by register p1
if let Some(RegDataType::Int(return_i)) = state.mem.r.get(&p1) {
state.mem.program_i = (*return_i + 1) as usize;
state.mem.r.remove(&p1);
continue;
} else {
if logger.log_enabled() {
let program_history: Vec<&(i64, String, i64, i64, i64, Vec<u8>)> =
state.history.iter().map(|i| &program[*i]).collect();
logger.add_result((program_history, None));
}
break;
}
}
OP_YIELD => {
// jump to p2 of the yield instruction pointed at by register p1, store prior instruction in p1
if let Some(RegDataType::Int(yield_i)) = state.mem.r.get_mut(&p1) {
let program_i: usize = state.mem.program_i;
//if yielding to a yield operation, go to the NEXT instruction after that instruction
if program
.get(*yield_i as usize)
.map(|(_, yield_op, _, _, _, _)| yield_op.as_str())
== Some(OP_YIELD)
{
state.mem.program_i = (*yield_i + 1) as usize;
*yield_i = program_i as i64;
continue;
} else {
state.mem.program_i = *yield_i as usize;
*yield_i = program_i as i64;
continue;
}
} else {
if logger.log_enabled() {
let program_history: Vec<&(i64, String, i64, i64, i64, Vec<u8>)> =
state.history.iter().map(|i| &program[*i]).collect();
logger.add_result((program_history, None));
}
break;
}
}
OP_JUMP => {
// goto one of <p1>, <p2>, or <p3> based on the result of a prior compare
let mut branch_state = state.clone();
branch_state.mem.program_i = p1 as usize;
states.push(branch_state);
let mut branch_state = state.clone();
branch_state.mem.program_i = p2 as usize;
states.push(branch_state);
let mut branch_state = state.clone();
branch_state.mem.program_i = p3 as usize;
states.push(branch_state);
}
OP_COLUMN => {
//Get the row stored at p1, or NULL; get the column stored at p2, or NULL
let value: ColumnType = state
.mem
.p
.get(&p1)
.and_then(|c| c.columns_ref(&state.mem.t, &state.mem.r))
.and_then(|cc| cc.get(&p2))
.cloned()
.unwrap_or_else(|| ColumnType::default());
// insert into p3 the datatype of the col
state.mem.r.insert(p3, RegDataType::Single(value));
}
OP_SEQUENCE => {
//Copy sequence number from cursor p1 to register p2, increment cursor p1 sequence number
//Cursor emulation doesn't sequence value, but it is an int
state.mem.r.insert(
p2,
RegDataType::Single(ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(false),
}),
);
}
OP_ROW_DATA | OP_SORTER_DATA => {
//Get entire row from cursor p1, store it into register p2
if let Some(record) = state
.mem
.p
.get(&p1)
.map(|c| c.columns(&state.mem.t, &state.mem.r))
{
state
.mem
.r
.insert(p2, RegDataType::Single(ColumnType::Record(record)));
} else {
state
.mem
.r
.insert(p2, RegDataType::Single(ColumnType::Record(IntMap::new())));
}
}
OP_MAKE_RECORD => {
// p3 = Record([p1 .. p1 + p2])
let mut record = Vec::with_capacity(p2 as usize);
for reg in p1..p1 + p2 {
record.push(
state
.mem
.r
.get(®)
.map(|d| d.map_to_columntype())
.unwrap_or(ColumnType::default()),
);
}
state.mem.r.insert(
p3,
RegDataType::Single(ColumnType::Record(IntMap::from_dense_record(&record))),
);
}
OP_INSERT | OP_IDX_INSERT | OP_SORTER_INSERT => {
if let Some(RegDataType::Single(ColumnType::Record(record))) =
state.mem.r.get(&p2)
{
if let Some(TableDataType { cols, is_empty }) = state
.mem
.p
.get(&p1)
.and_then(|cur| cur.table_mut(&mut state.mem.t))
{
// Insert the record into wherever pointer p1 is
*cols = record.clone();
*is_empty = Some(false);
}
}
//Noop if the register p2 isn't a record, or if pointer p1 does not exist
}
OP_DELETE => {
// delete a record from cursor p1
if let Some(TableDataType { is_empty, .. }) = state
.mem
.p
.get(&p1)
.and_then(|cur| cur.table_mut(&mut state.mem.t))
{
if *is_empty == Some(false) {
*is_empty = None; //the cursor might be empty now
}
}
}
OP_OPEN_PSEUDO => {
// Create a cursor p1 aliasing the record from register p2
state.mem.p.insert(p1, CursorDataType::Pseudo(p2));
}
OP_OPEN_DUP => {
if let Some(cur) = state.mem.p.get(&p2) {
state.mem.p.insert(p1, cur.clone());
}
}
OP_OPEN_READ | OP_OPEN_WRITE => {
//Create a new pointer which is referenced by p1, take column metadata from db schema if found
let table_info = if p3 == 0 || p3 == 1 {
if let Some(columns) = root_block_cols.get(&(p3, p2)) {
TableDataType {
cols: columns.clone(),
is_empty: None,
}
} else {
TableDataType {
cols: IntMap::new(),
is_empty: None,
}
}
} else {
TableDataType {
cols: IntMap::new(),
is_empty: None,
}
};
state.mem.t.insert(state.mem.program_i as i64, table_info);
state
.mem
.p
.insert(p1, CursorDataType::Normal(state.mem.program_i as i64));
}
OP_OPEN_EPHEMERAL | OP_OPEN_AUTOINDEX | OP_SORTER_OPEN => {
//Create a new pointer which is referenced by p1
let table_info = TableDataType {
cols: IntMap::from_dense_record(&vec![ColumnType::null(); p2 as usize]),
is_empty: Some(true),
};
state.mem.t.insert(state.mem.program_i as i64, table_info);
state
.mem
.p
.insert(p1, CursorDataType::Normal(state.mem.program_i as i64));
}
OP_VARIABLE => {
// r[p2] = <value of variable>
state
.mem
.r
.insert(p2, RegDataType::Single(ColumnType::null()));
}
// if there is a value in p3, and the query passes, then
// we know that it is not nullable
OP_HALT_IF_NULL => {
if let Some(RegDataType::Single(ColumnType::Single { nullable, .. })) =
state.mem.r.get_mut(&p3)
{
*nullable = Some(false);
}
}
OP_FUNCTION => {
// r[p3] = func( _ ), registered function name is in p4
match from_utf8(p4).map_err(Error::protocol)? {
"last_insert_rowid(0)" => {
// last_insert_rowid() -> INTEGER
state.mem.r.insert(
p3,
RegDataType::Single(ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(false),
}),
);
}
"date(-1)" | "time(-1)" | "datetime(-1)" | "strftime(-1)" => {
// date|time|datetime|strftime(...) -> TEXT
state.mem.r.insert(
p3,
RegDataType::Single(ColumnType::Single {
datatype: DataType::Text,
nullable: Some(p2 != 0), //never a null result if no argument provided
}),
);
}
"julianday(-1)" => {
// julianday(...) -> REAL
state.mem.r.insert(
p3,
RegDataType::Single(ColumnType::Single {
datatype: DataType::Float,
nullable: Some(p2 != 0), //never a null result if no argument provided
}),
);
}
"unixepoch(-1)" => {
// unixepoch(p2...) -> INTEGER
state.mem.r.insert(
p3,
RegDataType::Single(ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(p2 != 0), //never a null result if no argument provided
}),
);
}
_ => logger.add_unknown_operation(&program[state.mem.program_i]),
}
}
OP_NULL_ROW => {
// all columns in cursor X are potentially nullable
if let Some(cols) = state
.mem
.p
.get_mut(&p1)
.and_then(|c| c.columns_mut(&mut state.mem.t, &mut state.mem.r))
{
for col in cols.values_mut() {
if let ColumnType::Single {
ref mut nullable, ..
} = col
{
*nullable = Some(true);
}
}
}
//else we don't know about the cursor
}
OP_AGG_STEP | OP_AGG_VALUE => {
//assume that AGG_FINAL will be called
let p4 = from_utf8(p4).map_err(Error::protocol)?;
if p4.starts_with("count(")
|| p4.starts_with("row_number(")
|| p4.starts_with("rank(")
|| p4.starts_with("dense_rank(")
|| p4.starts_with("ntile(")
{
// count(_) -> INTEGER
state.mem.r.insert(
p3,
RegDataType::Single(ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(false),
}),
);
} else if p4.starts_with("percent_rank(") || p4.starts_with("cume_dist") {
// percent_rank(_) -> REAL
state.mem.r.insert(
p3,
RegDataType::Single(ColumnType::Single {
datatype: DataType::Float,
nullable: Some(false),
}),
);
} else if p4.starts_with("sum(") {
if let Some(r_p2) = state.mem.r.get(&p2) {
let datatype = match r_p2.map_to_datatype() {
DataType::Int64 => DataType::Int64,
DataType::Int => DataType::Int,
DataType::Bool => DataType::Int,
_ => DataType::Float,
};
let nullable = r_p2.map_to_nullable();
state.mem.r.insert(
p3,
RegDataType::Single(ColumnType::Single { datatype, nullable }),
);
}
} else if p4.starts_with("lead(") || p4.starts_with("lag(") {
if let Some(r_p2) = state.mem.r.get(&p2) {
let datatype = r_p2.map_to_datatype();
state.mem.r.insert(
p3,
RegDataType::Single(ColumnType::Single {
datatype,
nullable: Some(true),
}),
);
}
} else if let Some(v) = state.mem.r.get(&p2).cloned() {
// r[p3] = AGG ( r[p2] )
state.mem.r.insert(p3, v);
}
}
OP_AGG_FINAL => {
let p4 = from_utf8(p4).map_err(Error::protocol)?;
if p4.starts_with("count(")
|| p4.starts_with("row_number(")
|| p4.starts_with("rank(")
|| p4.starts_with("dense_rank(")
|| p4.starts_with("ntile(")
{
// count(_) -> INTEGER
state.mem.r.insert(
p1,
RegDataType::Single(ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(false),
}),
);
} else if p4.starts_with("percent_rank(") || p4.starts_with("cume_dist") {
// percent_rank(_) -> REAL
state.mem.r.insert(
p3,
RegDataType::Single(ColumnType::Single {
datatype: DataType::Float,
nullable: Some(false),
}),
);
} else if p4.starts_with("lead(") || p4.starts_with("lag(") {
if let Some(r_p2) = state.mem.r.get(&p2) {
let datatype = r_p2.map_to_datatype();
state.mem.r.insert(
p3,
RegDataType::Single(ColumnType::Single {
datatype,
nullable: Some(true),
}),
);
}
}
}
OP_CAST => {
// affinity(r[p1])
if let Some(v) = state.mem.r.get_mut(&p1) {
*v = RegDataType::Single(ColumnType::Single {
datatype: affinity_to_type(p2 as u8),
nullable: v.map_to_nullable(),
});
}
}
OP_SCOPY | OP_INT_COPY => {
// r[p2] = r[p1]
if let Some(v) = state.mem.r.get(&p1).cloned() {
state.mem.r.insert(p2, v);
}
}
OP_COPY => {
// r[p2..=p2+p3] = r[p1..=p1+p3]
if p3 >= 0 {
for i in 0..=p3 {
let src = p1 + i;
let dst = p2 + i;
if let Some(v) = state.mem.r.get(&src).cloned() {
state.mem.r.insert(dst, v);
}
}
}
}
OP_MOVE => {
// r[p2..p2+p3] = r[p1..p1+p3]; r[p1..p1+p3] = null
if p3 >= 1 {
for i in 0..p3 {
let src = p1 + i;
let dst = p2 + i;
if let Some(v) = state.mem.r.get(&src).cloned() {
state.mem.r.insert(dst, v);
state
.mem
.r
.insert(src, RegDataType::Single(ColumnType::null()));
}
}
}
}
OP_INTEGER => {
// r[p2] = p1
state.mem.r.insert(p2, RegDataType::Int(p1));
}
OP_BLOB | OP_COUNT | OP_REAL | OP_STRING8 | OP_ROWID | OP_NEWROWID => {
// r[p2] = <value of constant>
state.mem.r.insert(
p2,
RegDataType::Single(ColumnType::Single {
datatype: opcode_to_type(&opcode),
nullable: Some(false),
}),
);
}
OP_NOT => {
// r[p2] = NOT r[p1]
if let Some(a) = state.mem.r.get(&p1).cloned() {
state.mem.r.insert(p2, a);
}
}
OP_NULL => {
// r[p2..p3] = null
let idx_range = if p2 < p3 { p2..=p3 } else { p2..=p2 };
for idx in idx_range {
state
.mem
.r
.insert(idx, RegDataType::Single(ColumnType::null()));
}
}
OP_OR | OP_AND | OP_BIT_AND | OP_BIT_OR | OP_SHIFT_LEFT | OP_SHIFT_RIGHT
| OP_ADD | OP_SUBTRACT | OP_MULTIPLY | OP_DIVIDE | OP_REMAINDER | OP_CONCAT => {
// r[p3] = r[p1] + r[p2]
let value = match (state.mem.r.get(&p1), state.mem.r.get(&p2)) {
(Some(a), Some(b)) => RegDataType::Single(ColumnType::Single {
datatype: if matches!(a.map_to_datatype(), DataType::Null) {
b.map_to_datatype()
} else {
a.map_to_datatype()
},
nullable: match (a.map_to_nullable(), b.map_to_nullable()) {
(Some(a_n), Some(b_n)) => Some(a_n | b_n),
(Some(a_n), None) => Some(a_n),
(None, Some(b_n)) => Some(b_n),
(None, None) => None,
},
}),
(Some(v), None) => RegDataType::Single(ColumnType::Single {
datatype: v.map_to_datatype(),
nullable: None,
}),
(None, Some(v)) => RegDataType::Single(ColumnType::Single {
datatype: v.map_to_datatype(),
nullable: None,
}),
_ => RegDataType::default(),
};
state.mem.r.insert(p3, value);
}
OP_OFFSET_LIMIT => {
// r[p2] = if r[p2] < 0 { r[p1] } else if r[p1]<0 { -1 } else { r[p1] + r[p3] }
state.mem.r.insert(
p2,
RegDataType::Single(ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(false),
}),
);
}
OP_RESULT_ROW => {
// output = r[p1 .. p1 + p2]
state.result = Some(
(p1..p1 + p2)
.map(|i| {
let coltype = state.mem.r.get(&i);
let sqltype =
coltype.map(|d| d.map_to_datatype()).map(SqliteTypeInfo);
let nullable =
coltype.map(|d| d.map_to_nullable()).unwrap_or_default();
(sqltype, nullable)
})
.collect(),
);
if logger.log_enabled() {
let program_history: Vec<&(i64, String, i64, i64, i64, Vec<u8>)> =
state.history.iter().map(|i| &program[*i]).collect();
logger.add_result((program_history, Some(state.result.clone())));
}
result_states.push(state.clone());
}
OP_HALT => {
if logger.log_enabled() {
let program_history: Vec<&(i64, String, i64, i64, i64, Vec<u8>)> =
state.history.iter().map(|i| &program[*i]).collect();
logger.add_result((program_history, None));
}
break;
}
_ => {
// ignore unsupported operations
// if we fail to find an r later, we just give up
logger.add_unknown_operation(&program[state.mem.program_i]);
}
}
state.mem.program_i += 1;
}
}
let mut output: Vec<Option<SqliteTypeInfo>> = Vec::new();
let mut nullable: Vec<Option<bool>> = Vec::new();
while let Some(state) = result_states.pop() {
// find the datatype info from each ResultRow execution
if let Some(result) = state.result {
let mut idx = 0;
for (this_type, this_nullable) in result {
if output.len() == idx {
output.push(this_type);
} else if output[idx].is_none()
|| matches!(output[idx], Some(SqliteTypeInfo(DataType::Null)))
{
output[idx] = this_type;
}
if nullable.len() == idx {
nullable.push(this_nullable);
} else if let Some(ref mut null) = nullable[idx] {
//if any ResultRow's column is nullable, the final result is nullable
if let Some(this_null) = this_nullable {
*null |= this_null;
}
} else {
nullable[idx] = this_nullable;
}
idx += 1;
}
}
}
let output = output
.into_iter()
.map(|o| o.unwrap_or(SqliteTypeInfo(DataType::Null)))
.collect();
Ok((output, nullable))
}
#[test]
fn test_root_block_columns_has_types() {
use crate::SqliteConnectOptions;
use std::str::FromStr;
let conn_options = SqliteConnectOptions::from_str("sqlite::memory:").unwrap();
let mut conn = super::EstablishParams::from_options(&conn_options)
.unwrap()
.establish()
.unwrap();
assert!(execute::iter(
&mut conn,
r"CREATE TABLE t(a INTEGER PRIMARY KEY, b_null TEXT NULL, b TEXT NOT NULL);",
None,
false
)
.unwrap()
.next()
.is_some());
assert!(
execute::iter(&mut conn, r"CREATE INDEX i1 on t (a,b_null);", None, false)
.unwrap()
.next()
.is_some()
);
assert!(execute::iter(
&mut conn,
r"CREATE UNIQUE INDEX i2 on t (a,b_null);",
None,
false
)
.unwrap()
.next()
.is_some());
assert!(execute::iter(
&mut conn,
r"CREATE TABLE t2(a INTEGER NOT NULL, b_null NUMERIC NULL, b NUMERIC NOT NULL);",
None,
false
)
.unwrap()
.next()
.is_some());
assert!(execute::iter(
&mut conn,
r"CREATE INDEX t2i1 on t2 (a,b_null);",
None,
false
)
.unwrap()
.next()
.is_some());
assert!(execute::iter(
&mut conn,
r"CREATE UNIQUE INDEX t2i2 on t2 (a,b);",
None,
false
)
.unwrap()
.next()
.is_some());
assert!(execute::iter(
&mut conn,
r"CREATE TEMPORARY TABLE t3(a TEXT PRIMARY KEY, b REAL NOT NULL, b_null REAL NULL);",
None,
false
)
.unwrap()
.next()
.is_some());
let table_block_nums: HashMap<String, (i64,i64)> = execute::iter(
&mut conn,
r"select name, 0 db_seq, rootpage from main.sqlite_schema UNION ALL select name, 1 db_seq, rootpage from temp.sqlite_schema",
None,
false,
)
.unwrap()
.filter_map(|res| res.map(|either| either.right()).transpose())
.map(|row| FromRow::from_row(row.as_ref().unwrap()))
.map(|row| row.map(|(name,seq,block)|(name,(seq,block))))
.collect::<Result<HashMap<_, _>, Error>>()
.unwrap();
let root_block_cols = root_block_columns(&mut conn).unwrap();
// there should be 7 tables/indexes created explicitly, plus 1 autoindex for t3
assert_eq!(8, root_block_cols.len());
//prove that we have some information for each table & index
for (name, db_seq_block) in dbg!(&table_block_nums) {
assert!(
root_block_cols.contains_key(db_seq_block),
"{:?}",
(name, db_seq_block)
);
}
//prove that each block has the correct information
{
let table_db_block = table_block_nums["t"];
assert_eq!(
ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(true) //sqlite primary key columns are nullable unless declared not null
},
root_block_cols[&table_db_block][&0]
);
assert_eq!(
ColumnType::Single {
datatype: DataType::Text,
nullable: Some(true)
},
root_block_cols[&table_db_block][&1]
);
assert_eq!(
ColumnType::Single {
datatype: DataType::Text,
nullable: Some(false)
},
root_block_cols[&table_db_block][&2]
);
}
{
let table_db_block = table_block_nums["i1"];
assert_eq!(
ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(true) //sqlite primary key columns are nullable unless declared not null
},
root_block_cols[&table_db_block][&0]
);
assert_eq!(
ColumnType::Single {
datatype: DataType::Text,
nullable: Some(true)
},
root_block_cols[&table_db_block][&1]
);
}
{
let table_db_block = table_block_nums["i2"];
assert_eq!(
ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(true) //sqlite primary key columns are nullable unless declared not null
},
root_block_cols[&table_db_block][&0]
);
assert_eq!(
ColumnType::Single {
datatype: DataType::Text,
nullable: Some(true)
},
root_block_cols[&table_db_block][&1]
);
}
{
let table_db_block = table_block_nums["t2"];
assert_eq!(
ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(false)
},
root_block_cols[&table_db_block][&0]
);
assert_eq!(
ColumnType::Single {
datatype: DataType::Null,
nullable: Some(true)
},
root_block_cols[&table_db_block][&1]
);
assert_eq!(
ColumnType::Single {
datatype: DataType::Null,
nullable: Some(false)
},
root_block_cols[&table_db_block][&2]
);
}
{
let table_db_block = table_block_nums["t2i1"];
assert_eq!(
ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(false)
},
root_block_cols[&table_db_block][&0]
);
assert_eq!(
ColumnType::Single {
datatype: DataType::Null,
nullable: Some(true)
},
root_block_cols[&table_db_block][&1]
);
}
{
let table_db_block = table_block_nums["t2i2"];
assert_eq!(
ColumnType::Single {
datatype: DataType::Int64,
nullable: Some(false)
},
root_block_cols[&table_db_block][&0]
);
assert_eq!(
ColumnType::Single {
datatype: DataType::Null,
nullable: Some(false)
},
root_block_cols[&table_db_block][&1]
);
}
{
let table_db_block = table_block_nums["t3"];
assert_eq!(
ColumnType::Single {
datatype: DataType::Text,
nullable: Some(true)
},
root_block_cols[&table_db_block][&0]
);
assert_eq!(
ColumnType::Single {
datatype: DataType::Float,
nullable: Some(false)
},
root_block_cols[&table_db_block][&1]
);
assert_eq!(
ColumnType::Single {
datatype: DataType::Float,
nullable: Some(true)
},
root_block_cols[&table_db_block][&2]
);
}
}