1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
use std::cmp::Ordering;
use std::fmt::{self, Debug, Formatter};
use std::ptr::NonNull;
use futures_core::future::BoxFuture;
use futures_intrusive::sync::MutexGuard;
use futures_util::future;
use libsqlite3_sys::sqlite3;
pub(crate) use handle::{ConnectionHandle, ConnectionHandleRaw};
use crate::common::StatementCache;
use crate::connection::{Connection, LogSettings};
use crate::error::Error;
use crate::sqlite::connection::establish::EstablishParams;
use crate::sqlite::connection::worker::ConnectionWorker;
use crate::sqlite::statement::VirtualStatement;
use crate::sqlite::{Sqlite, SqliteConnectOptions};
use crate::transaction::Transaction;
pub(crate) mod collation;
pub(crate) mod describe;
pub(crate) mod establish;
pub(crate) mod execute;
mod executor;
mod explain;
mod handle;
mod worker;
/// A connection to an open [Sqlite] database.
///
/// Because SQLite is an in-process database accessed by blocking API calls, SQLx uses a background
/// thread and communicates with it via channels to allow non-blocking access to the database.
///
/// Dropping this struct will signal the worker thread to quit and close the database, though
/// if an error occurs there is no way to pass it back to the user this way.
///
/// You can explicitly call [`.close()`][Self::close] to ensure the database is closed successfully
/// or get an error otherwise.
pub struct SqliteConnection {
pub(crate) worker: ConnectionWorker,
pub(crate) row_channel_size: usize,
}
pub struct LockedSqliteHandle<'a> {
pub(crate) guard: MutexGuard<'a, ConnectionState>,
}
pub(crate) struct ConnectionState {
pub(crate) handle: ConnectionHandle,
// transaction status
pub(crate) transaction_depth: usize,
pub(crate) statements: Statements,
log_settings: LogSettings,
}
pub(crate) struct Statements {
// cache of semi-persistent statements
cached: StatementCache<VirtualStatement>,
// most recent non-persistent statement
temp: Option<VirtualStatement>,
}
impl SqliteConnection {
pub(crate) async fn establish(options: &SqliteConnectOptions) -> Result<Self, Error> {
let params = EstablishParams::from_options(options)?;
let worker = ConnectionWorker::establish(params).await?;
Ok(Self {
worker,
row_channel_size: options.row_channel_size,
})
}
/// Returns the underlying sqlite3* connection handle.
///
/// ### Note
/// There is no synchronization using this method, beware that the background thread could
/// be making SQLite API calls concurrent to use of this method.
///
/// You probably want to use [`.lock_handle()`][Self::lock_handle] to ensure that the worker thread is not using
/// the database concurrently.
#[deprecated = "Unsynchronized access is unsafe. See documentation for details."]
pub fn as_raw_handle(&mut self) -> *mut sqlite3 {
self.worker.handle_raw.as_ptr()
}
/// Apply a collation to the open database.
///
/// See [`SqliteConnectOptions::collation()`] for details.
///
/// ### Deprecated
/// Due to the rearchitecting of the SQLite driver, this method cannot actually function
/// synchronously and return the result directly from `sqlite3_create_collation_v2()`, so
/// it instead sends a message to the worker create the collation asynchronously.
/// If an error occurs it will simply be logged.
///
/// Instead, you should specify the collation during the initial configuration with
/// [`SqliteConnectOptions::collation()`]. Then, if the collation fails to apply it will
/// return an error during the connection creation. When used with a [Pool][crate::pool::Pool],
/// this also ensures that the collation is applied to all connections automatically.
///
/// Or if necessary, you can call [`.lock_handle()`][Self::lock_handle]
/// and create the collation directly with [`LockedSqliteHandle::create_collation()`].
///
/// [`Error::WorkerCrashed`] may still be returned if we could not communicate with the worker.
///
/// Note that this may also block if the worker command channel is currently applying
/// backpressure.
#[deprecated = "Completes asynchronously. See documentation for details."]
pub fn create_collation(
&mut self,
name: &str,
compare: impl Fn(&str, &str) -> Ordering + Send + Sync + 'static,
) -> Result<(), Error> {
self.worker.create_collation(name, compare)
}
/// Lock the SQLite database handle out from the worker thread so direct SQLite API calls can
/// be made safely.
///
/// Returns an error if the worker thread crashed.
pub async fn lock_handle(&mut self) -> Result<LockedSqliteHandle<'_>, Error> {
let guard = self.worker.unlock_db().await?;
Ok(LockedSqliteHandle { guard })
}
}
impl Debug for SqliteConnection {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("SqliteConnection")
.field("row_channel_size", &self.row_channel_size)
.field("cached_statements_size", &self.cached_statements_size())
.finish()
}
}
impl Connection for SqliteConnection {
type Database = Sqlite;
type Options = SqliteConnectOptions;
fn close(mut self) -> BoxFuture<'static, Result<(), Error>> {
Box::pin(async move {
let shutdown = self.worker.shutdown();
// Drop the statement worker, which should
// cover all references to the connection handle outside of the worker thread
drop(self);
// Ensure the worker thread has terminated
shutdown.await
})
}
fn close_hard(self) -> BoxFuture<'static, Result<(), Error>> {
Box::pin(async move {
drop(self);
Ok(())
})
}
/// Ensure the background worker thread is alive and accepting commands.
fn ping(&mut self) -> BoxFuture<'_, Result<(), Error>> {
Box::pin(self.worker.ping())
}
fn begin(&mut self) -> BoxFuture<'_, Result<Transaction<'_, Self::Database>, Error>>
where
Self: Sized,
{
Transaction::begin(self)
}
fn cached_statements_size(&self) -> usize {
self.worker
.shared
.cached_statements_size
.load(std::sync::atomic::Ordering::Acquire)
}
fn clear_cached_statements(&mut self) -> BoxFuture<'_, Result<(), Error>> {
Box::pin(async move {
self.worker.clear_cache().await?;
Ok(())
})
}
#[doc(hidden)]
fn flush(&mut self) -> BoxFuture<'_, Result<(), Error>> {
// For SQLite, FLUSH does effectively nothing...
// Well, we could use this to ensure that the command channel has been cleared,
// but it would only develop a backlog if a lot of queries are executed and then cancelled
// partway through, and then this would only make that situation worse.
Box::pin(future::ok(()))
}
#[doc(hidden)]
fn should_flush(&self) -> bool {
false
}
}
impl LockedSqliteHandle<'_> {
/// Returns the underlying sqlite3* connection handle.
///
/// As long as this `LockedSqliteHandle` exists, it is guaranteed that the background thread
/// is not making FFI calls on this database handle or any of its statements.
pub fn as_raw_handle(&mut self) -> NonNull<sqlite3> {
self.guard.handle.as_non_null_ptr()
}
/// Apply a collation to the open database.
///
/// See [`SqliteConnectOptions::collation()`] for details.
pub fn create_collation(
&mut self,
name: &str,
compare: impl Fn(&str, &str) -> Ordering + Send + Sync + 'static,
) -> Result<(), Error> {
collation::create_collation(&mut self.guard.handle, name, compare)
}
}
impl Drop for ConnectionState {
fn drop(&mut self) {
// explicitly drop statements before the connection handle is dropped
self.statements.clear();
}
}
impl Statements {
fn new(capacity: usize) -> Self {
Statements {
cached: StatementCache::new(capacity),
temp: None,
}
}
fn get(&mut self, query: &str, persistent: bool) -> Result<&mut VirtualStatement, Error> {
if !persistent || !self.cached.is_enabled() {
return Ok(self.temp.insert(VirtualStatement::new(query, false)?));
}
let exists = self.cached.contains_key(query);
if !exists {
let statement = VirtualStatement::new(query, true)?;
self.cached.insert(query, statement);
}
let statement = self.cached.get_mut(query).unwrap();
if exists {
// as this statement has been executed before, we reset before continuing
statement.reset()?;
}
Ok(statement)
}
fn len(&self) -> usize {
self.cached.len()
}
fn clear(&mut self) {
self.cached.clear();
self.temp = None;
}
}