sqlx_conditional_queries_core/analyze.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
use syn::spanned::Spanned;
use crate::parse::ParsedConditionalQueryAs;
#[derive(Debug, thiserror::Error)]
pub enum AnalyzeError {
#[error("expected string literal")]
ExpectedStringLiteral(proc_macro2::Span),
#[error("mismatch between number of names ({names}) and values ({values})")]
BindingNameValueLengthMismatch {
names: usize,
names_span: proc_macro2::Span,
values: usize,
values_span: proc_macro2::Span,
},
}
/// This represents the finished second step in the processing pipeline.
/// The compile time bindings have been further processed to a form that allows us to easily create
/// the cartesian product and thereby all query variations in the next step.
#[derive(Debug)]
pub(crate) struct AnalyzedConditionalQueryAs {
pub(crate) output_type: syn::Ident,
pub(crate) query_string: syn::LitStr,
pub(crate) compile_time_bindings: Vec<CompileTimeBinding>,
}
/// This represents a single combination of a single compiletime binding of a query.
#[derive(Debug)]
pub(crate) struct CompileTimeBinding {
/// The actual expression used in the match statement.
/// E.g. for `match something`, this would be `something`.
pub(crate) expression: syn::Expr,
/// Each entry in this Vec represents a single expanded `match` and the
/// binding names with the binding values from that specific arm.
/// (`match arm pattern`, Vec(binding_name, binding_value)`
pub(crate) arms: Vec<(syn::Pat, Vec<(syn::Ident, syn::LitStr)>)>,
}
/// Further parse and analyze all compiletime binding statements.
/// Each binding is split into individual entries of this form:
/// (`match arm pattern`, Vec(binding_name, binding_value)`
pub(crate) fn analyze(
parsed: ParsedConditionalQueryAs,
) -> Result<AnalyzedConditionalQueryAs, AnalyzeError> {
let mut compile_time_bindings = Vec::new();
for (names, match_expr) in parsed.compile_time_bindings {
let binding_names_span = names.span();
// Convert the OneOrPunctuated enum in a list of `Ident`s.
// `One(T)` will be converted into a Vec with a single entry.
let binding_names: Vec<_> = names.into_iter().collect();
let mut bindings = Vec::new();
for arm in match_expr.arms {
let arm_span = arm.body.span();
let binding_values = match *arm.body {
// If the match arm expression just contains a literal, use that.
syn::Expr::Lit(syn::ExprLit {
lit: syn::Lit::Str(literal),
..
}) => vec![literal],
// If there's a tuple, treat each literal inside that tuple as a binding value.
syn::Expr::Tuple(tuple) => {
let mut values = Vec::new();
for elem in tuple.elems {
match elem {
syn::Expr::Lit(syn::ExprLit {
lit: syn::Lit::Str(literal),
..
}) => values.push(literal),
_ => return Err(AnalyzeError::ExpectedStringLiteral(elem.span())),
}
}
values
}
body => return Err(AnalyzeError::ExpectedStringLiteral(body.span())),
};
// There must always be a matching amount of binding values in each match arm.
// Error if there are more or fewer values than binding names.
if binding_names.len() != binding_values.len() {
return Err(AnalyzeError::BindingNameValueLengthMismatch {
names: binding_names.len(),
names_span: binding_names_span,
values: binding_values.len(),
values_span: arm_span,
});
}
bindings.push((
arm.pat,
binding_names
.iter()
.cloned()
.zip(binding_values)
.collect::<Vec<_>>(),
));
}
compile_time_bindings.push(CompileTimeBinding {
expression: *match_expr.expr,
arms: bindings,
});
}
Ok(AnalyzedConditionalQueryAs {
output_type: parsed.output_type,
query_string: parsed.query_string,
compile_time_bindings,
})
}
#[cfg(test)]
mod tests {
use quote::ToTokens;
use super::*;
#[test]
fn valid_syntax() {
let parsed = syn::parse_str::<ParsedConditionalQueryAs>(
r#"
SomeType,
"some SQL query",
#binding = match foo {
bar => "baz",
},
#(a, b) = match c {
d => ("e", "f"),
},
"#,
)
.unwrap();
let mut analyzed = analyze(parsed.clone()).unwrap();
assert_eq!(parsed.output_type, analyzed.output_type);
assert_eq!(parsed.query_string, analyzed.query_string);
assert_eq!(analyzed.compile_time_bindings.len(), 2);
{
let compile_time_binding = dbg!(analyzed.compile_time_bindings.remove(0));
assert_eq!(
compile_time_binding
.expression
.to_token_stream()
.to_string(),
"foo",
);
assert_eq!(compile_time_binding.arms.len(), 1);
{
let arm = &compile_time_binding.arms[0];
assert_eq!(arm.0.to_token_stream().to_string(), "bar");
assert_eq!(
arm.1
.iter()
.map(|v| (
v.0.to_token_stream().to_string(),
v.1.to_token_stream().to_string(),
))
.collect::<Vec<_>>(),
&[("binding".to_string(), "\"baz\"".to_string())],
);
}
}
{
let compile_time_binding = dbg!(analyzed.compile_time_bindings.remove(0));
assert_eq!(
compile_time_binding
.expression
.to_token_stream()
.to_string(),
"c",
);
assert_eq!(
compile_time_binding
.arms
.iter()
.map(|v| v.0.to_token_stream().to_string())
.collect::<Vec<_>>(),
&["d"],
);
assert_eq!(compile_time_binding.arms.len(), 1);
{
let arm = &compile_time_binding.arms[0];
assert_eq!(arm.0.to_token_stream().to_string(), "d");
assert_eq!(
arm.1
.iter()
.map(|v| (
v.0.to_token_stream().to_string(),
v.1.to_token_stream().to_string(),
))
.collect::<Vec<_>>(),
&[
("a".to_string(), "\"e\"".to_string()),
("b".to_string(), "\"f\"".to_string())
],
);
}
}
}
}